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For the former we take a min-max approach: the signal and 
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tion show that the approximate scheme has the potential to out- 
perform the Generalized Cross Correlator (GCC) class of optimal 
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It is well known that as the observations become narrowband 
the classical optimal time delay estimate degenerates rapidly due 
to the so called "peak ambiguity" problem. For Gaussian obser- 
vations in the narrowband case, this arises from the multipeaked 
nature of the likelihood function over which the global maximum 
is acquired. We are interested in two aspects of the problem: 
the improvement of performance, where possible, through alter- 
native estimation techniques; and the characterization of 
the large error performance of the GCC class. Two new processors 
are presented, one arising from constraining the optimal esti- 
mator to have low sidelobes, and the other derived from an opti- 
mization over a new family of processors, the Center of Symmetry 
Estimator (CSE). Simulation results for the CSE indicate 
that it can have significantly better large error performance 
than the GCC. We approach the performance characterization pro- 
blem in the following way: the performance of the optimal esti- 
mator in the presence of large errors is related to the proba- 
bility that the likelihood function gives an estimate which is 
far removed from the true time delay. This probability, in turn, 
admits a representation in terms of level up-crossing proba- 
bilities. In Chapter 4, we present a general theorem on the 
asymptotic behavior of the level up-crossings of a non-stationary 
random process. Then, based on the results of Chapter 4, a 
Poisson model is invoked as an approximation to the level 
crossings and a numerical study of the large error probability 
and the global variance is undertaken for lowpass and bandpass 
signal spectra.• . 
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A.O. Hero and S.C. Schwartz 
Department of Electrical Engineering 
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Abstract 

Time delay estimation forms the base from which passive localization and 

tracking may function accurately. In this thesis we consider both the practical 

and theoretical aspects of time delay estimation when classical optimal estimation 

techniques break down. Of special concern are two adverse situations: the under- 

lying statistics of the observations are incompletely specified; and the observa- 

tions contain a narrowband component. 

For the former we take a min-max approach: the signal and noise spectra are 

assumed to belong to uncertainty classes of spectra and a processor is specified 

which attains the best possible performance over the entire class. While the clas- 

sical min-max time delay estimation problem is solved only in a restricted sense, 

use is made of the existing theory on Robust (min-max) Wiener filtering to 

motivate an approximate min-max processor. Performance curves for the uncer- 

tain spectra situation show that the approximate scheme has the potential to out- 

perform the Generalized Cross Girrelator (GCC) class of optimal processors. 



It is well known that as the observations become narrowband the classical 

optimal time delay estimate degenerates rapidly due to the so called "peak ambi- 

guity" problem.   For Gaussian observations in the narrowband case, this arises 

from the multipeaked nature of the likelihood function over which the global 

maximum is acquired.   We are interested in two aspects of the problem: the 

improvement of performance, where possible, through alternative estimation tech- 

niques; and the characterization of the large error performance of the GCC class. 

Two new processors are presented, one arising from constraining the optimal esti- 

mator to have low sidelobes, and the other derived from an optimization over a 

new family of processors, the Center of Symmetry Estimator (CSE). Simulation 

results for the CSE indicate that it can have significantly better large error per- 

formance than the GCC. We approach the performance characterization problem 

in the following way: the performance of the optimal estimator in the presence of 

large errors is related to the probability that the likelihood function gives an esti- 

mate which is far removed from the true time delay.   This probability, in turn, 

admits a representation m terms of level up-crossing probabilities.  In Chapter 4, 

we present a general theorem on the asymptotic behavior of the level up-crossings 

of a non-stationary random process.   Then, based on the results of Chapter 4, a 

Poisson model is invoked as an approximation to the level crossings and a numer- 

ical study of the large error probability and the global variance is undertaken for 

lowpass and bandpass signal spectra. 
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p7: Line 4 should read " the variance of /? 12 " 

r r 
pll: Eqs. (20) and (21): " / " replaces " / ». 

0 -r 

pl6: Line 7 and 8: delete " (see Eqns. ...) ". 

p71: Eq. 1:  " 3 " replaces" E ". 

p85: Eq. (43): " - " in exponential argument should be " + ". 
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Chapter 1 

Introduction 

Time delays are inherent to many important problems in a variety of scien- 

tific and engineering disciplines. In observational astronomy, very long baseline 

interferometry (VLBI) uses the relative delays between multiple measurements, 

taken at widely separated sensors, to compute the positions of heavenly bodies. 

In radio communications, increases in the received signal energy are possible 

through coherent (time-aligned) combination of the outputs of a multi-sensor 

antenna array. As an example from medical research, studies in evoked poten- 

tials involve computing the reaction time of a subject to different forms of 

stimuli. Essentially, in any situation where measurements are taken at multiple 

points in space in order to resolve or utilize certain characteristics of a propagat- 

ing signal, the inter-sensor propagation time is of prime importance. 

For the two sensor, linear inter-sensor channel case, cross- correlation of the 

sensor outputs produces a global peak at the true delay. However, the presence 

of significant random sensor noise makes it essential to pre-process the outputs, 

prior to correlation, in order to obtain acceptable peak type estimates of the 

delay parameter. The susceptability of correlation peak estimates to various fac- 

tors such as: unknown signal statistics, low signal bandwidth, high center fre- 

quency and small observation time, is well documented in the literature. In this 

thesis we concentrate on: 1). developing cross-correlation techniques which are 

less sensitive to the above factors, and 2). better characterizing the (large error) 

performance of peak detection type correlation estimates relative to the unfavor- 

able conditions above. The main results in these directions are organized into 

four chapters (Chapters 2,3 and 6 deal with 1)., Chapter 5 deals with 2).). The 

remaining chapter, Chapter 4, contains results which are supportive to Chapter 

5.   Chapters 2,3,4,5 and 6 are briefly summarized below. 



-2- 

Chapter 2 sets up the formal problem definition. Then a unifying interpreta- 

tion of several of the classical Generalized Cross Correlation (GCC) methods is 

given in terms of signal-to-noise ratio (SNR). The main result is the development 

of a new GCC motivated from Least Mean Square Error (LMSE) filtering of the 

sensors. A first step towards obtaining robust estimates of time delay, under 

uncertainty on the signal and noise spectra, is acheived by implementing robust 

Wiener filters in place of the global LMSE filters for the signal. Finally a numer- 

ical evaluation of performance is undertaken to compare the new techniques to 

some of the well known GCCs. 

In Chapter 3, an alternate approach is proposed: one obtains the time delay 

estimate by means of an approximation to the center of symmetry of the GCC 

rather by the conventional peak detection method. A class of center of symmetry 

estimators (CSE) is defined using the Fourier coefficients of the GCC, and an 

approximate expression for the estimator variance is derived. An optimal 

(minimum variance) CSE is then obtained which is compared to the optimal 

(minimum variance) GCC by simulation. The results of the simulation indicate 

that for the difficult caae of narrowband signab, the optimal CSE has much 

better performance than the GCC for low SNR, and nearly identical performance 

for high SNR. 

While Chapter 4 is not directly related to time delay estimation, it provides 

the theoretical background for Chapter 5, which is concerned with more widely 

applicable GCC variance approximations than those currently available in the 

literature. Chapter 4 contains material on the asymptotic distribution of level 

crossing probabilities. Several authors have studied the weak convergence of the 

number of level crossings, N(i), of a given stationary random process over an 

interval [0,/], to a Poisson random count process, as the level is allowed to 

become large and the length of the interval b suitably normalized.  In Chapter 4 



results are obtained for the distribution of level up-crossings by a non-stationary 

random process. It is established that, under certain regularity conditions, the 

asymptotic distribution is again Poisson, but with an inhomogeneous (time vary- 

ing) rate parameter. This is accomplished by showing that the up-crossing pro- 

bability obeys an asymptotically linear, first order integral equation. 

In Chapter 5 a level crossing approach is developed to model the large error 

performance of the GCC. In the past, large error variance expressions were 

developed for the large bandwidth-time product (BT) case, which involve com- 

puting the probabilities of level exceedance by a finite, but large, number of time 

samples along the GCC trajectory. Essential to these previous methods is the 

assumption that the sidelobe activity of the GCC is negligible, a tenuous assump- 

tion for low BT or highly narrowband signal spectra. In Chapter 5 the expected 

number of up-crossings of a level by the GCC yields insights into the large error 

performance of the GCC for situations where reliable indicators could only be 

provided by experiment. Motivated by the results of Chapter 4, a Poisson 

approximation to the large error variance is derived. Numerical studies of the 

Poisson approximation reveal several effects on performance of highly nar- 

rowband signals. Some of these effects match the behavior of the Ziv-Zakai 

Lower Bound (ZZLB) on the variance of the optimal estimate, but were not 

detected by other large error approximations reported in the literature. 

Finally Chapter 6 informally explores two new and interesting techniques of 

performing time delay estimation. One of these is developed specifically for highly 

oscillatory periodic signals. It is motivated by the behavior of lower bounds (the 

ZZLB and others) on the variance of the optimal estimator. The resultant struc- 

ture for the estimator is a hybrid GCC processor which acts on the observations 

and their envelopes to obtain an optimal estimate. A constrained optimization of 

the local (small error)  and  the global (large error)  variance specifies a GCC 
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which, on the one hand, implements the locally optimal estimator, and on the 

other hand, passes the locally optimal estimate through a tapped delay line 

(equalization) to suppress its large error-prone sidelobes. The second technique 

investigated in this chapter uses a functional transformation on the cross- 

correlation which allows us to replace the inherently non-linear time delay esti- 

mation problem with a linear estimation problem (observations = delay + noise) 

under certain circumstances. Finally some optimal and sub-optimal processing 

structures are presented, based on the above linearization. A preliminary analysis 

of performance concludes the chapter. 
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The Wiener Processor for Time Delay 

I. Introduction 

In this chapter a general form of the time delay estimation problem of 

interest will be stated. In Section U, cross-correlation type processors will be 

motivated and the Generalized Cross-Correlator (GCC) will be defined. A corre- 

lation domain signal-to- noise ratio (SNR) approach will be adopted to derive 

three of the classical "optimal" GCCs in a unified manner. Although the concept 

of using SNR as a GCC optimization criterion is not new (two of these optimal 

GCCs were derived in this way by their respective authors), the 

Hannan-Thomson GCC [HT) has not previously been considered in this light. In 

chapter 6 one of the SNRs defined here, the one associated with the optimization 

yielding the HT, will be shown to have a special significance for the theoretical 

performance of the globally optimal (minimum variance) estimator. We conclude 

the introductory part of this chapter with a discussion of an "ad hoc" or intuitive 

GCC, the Smoothed Coherence Transform [SCOT). 

In Section HI, the main result of the chapter is presented, the derivation of 

the Wiener Processor (WP). This derivation is obtained by focusing on the 

observation domain, as opposed to the cross-correlation domain. A numerical 

study is presented in Section V which indicates good performance of the WP 

relative to the four other GCCs considered here. 

In general the optimum processors are very sensitive to deviations from the 

assumed signal and noise characteristics. By way of contrast, the SCOT appears 

to be more robust to these deviations from the nominal model, as has been indi- 

cated by experimental results. However, these latter processors can have very 

poor performance at the nominal point. 



In Section IV of this chapter, an implementation of the WP as a "robust" 

processor for spectral uncertainty (RWP) is discussed. The numerical results of 

Section V indicate a R WP performance gain, over the classical GCCs mentioned 

above, at the least favorable point in an £-contaminated uncertainty class of spec- 

tra. Hence, for the cases under consideration, the WP and RWP compare favor- 

ably to existing GCC methods of time delay estimation. 

n.  Problem Statement and Background 

We first consider a system model generating the observations in Fig. 1. We 

observe Gaussian, ergodic, wide-sense stationary processes        ; 

x\{t) = 8it)+ni{t) (1) 

:  ^2(0 = «. (0 + ^2(0 

over a time interval t € [0,T]. The noises ni{t) and ngC^) are uncorrelated broad- 

band Gaussian proceses, a(/) is a Gaussian signal and «^ (0 = c(f)* a(f) is a fil- 

tered version of s{t). In this chapter e{t) is a. linear, time invariant channel having 

a transfer function C[u), with unknown linear phase, so that 3^{t) is a. delayed , 

but possibly distorted, version of s(f). This delay, D, is a priori known to lie 

within the time interval [-D„ ,D„ ]. Furthermore, we assume that the noises are 

uncorrelated with the signal and that the observation time, T, is much greater 

than both the correlation time, T^, of Xi{t) and 2:2(0, and D„. The object is 

then to estimate the time delay, D, associated with the channel. 

We define the sample (averaged) cross-correlation 

m     ^ 

^M = 4:   E / ^li i<^)=^2k {<r+T)d<T (2) 
^    fc-i 0 

where i,-;t (/) is a time truncated version of x,- (f) for 1 = 1,2 
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,.^(^) = (^.(0, t^[{k-l)Tlm^kT/m\ 
'"^ '      V   0 , otherwise W 

where it is assumed that T/m » T^ and T/m » P„. When m = 1, in (2), 

the sample cross-correlation is called a coherent estimate of the cross-correlation 

function R jj. If T is sufficiently large one can choose m > 1 in order to reduce 

the variance of R jj. This latter procedure gives the so-called incoherent cross- 

correlation estimate. For simplicity of presentation, m = 1 in the remainder of 

this chapter.   Alternately (2) can be expressed in the frequency domain (for 

oo 

^M = ^ / Gi2{oj)e^---duj . (4) 
—00 

Here (712 = —  Xj* Xj, where Xj and X2 are the finite time Fourier transforms 

of xi and Zj- For large observation time, RM is a good approximation to the 

true cross-correlation function which has a global peak at D. In fact if c{t) is 

pure delay and 3{t) is white, the cross-correlation function is a delta function at 

the true delay. For finite observation time we can decompose i?i2{r) into the sum 

of four terms 

i,2(r) = c(r)*R,,trHc(T)*R„^,(r)-FR\„^{T)-hR„^„Jr) (5) 

where "*" denotes convolution. Here R^^{T) is an estimate of the signal auto- 

correlation function R„ (T), and i„^, (T), R,^J^T) and R^^^S^) are estimates of the 

cross-correlation between the respective signal and noise terms in the observa- 

tions. In the limit ergodicity guarantees that the sample cross-correlation con- 

verges to c(r)*/?g3 (r), which displays an absolute maximum at D. Thus, it is the 

last three terms in Eq. (5) which constitute zero mean disturbances affecting the 

peak resolution of the first term. This suggests prefiltering the sample cross- 
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coirelation with a filter \V[u) to obtain better resolution of the peak at D. To 

avoid the introduction of an unnecessary bias into the peak location we confine 

our attention to zero phase W[u). The resultant filtered sample cross-correlation 

is then searched over the a priori region [-D^D„ ] for the global peak, which 

yields the time delay estimate, D. This scheme is referred to as the generalized 

cross-correlation method or the Generalized Cross-Correlator (G.C.C.) and is 

illustrated in Fig. 2. We denote the G.C.C. output waveform R^{T). Therefore 

we have .,.■........■ 

^''(T)=~:   !Gi2{<^)W[u)e^'-^du . (6) 
-00        ." 

D =    argmax R^ (T) 

When W[(jj) is unity the resulting G.C.C. is called the simple cross-correlator 

{C.C.). Considering the first term in Eq. (5) as a "signal" in additive noise, clas- 

sical optimal filtering theory can be applied to derive filters W[uj) which maxim- 

ize signal-to-noise ratio. 

Letting the last three terms of Eqn (5) be characterized as "noise" we can 

define a signal-to-noise ratio at the output of the GCC as the magnitude squared 

of the global peak of the "signal" term divided by the power of the "noise" which 

generates false peaks in R\2{T). We will denote this SNR^. For a sufficiently 

broadband signal, s{t), the variance of the cross-correlation estimate, Eq. (2), out- 

side of the immediate vicinity of the true delay is given by 

00 

variR ^^T)) = -^    jG,^{u)G^{u)du (7) 
T2ir 

-00 

and the variance of /?„ by 

00 

t;ar(i„ (r)) =-i-    f  \Gi^{oj)\Uu (8) 
^2^      -00 
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for T 7^ Z? [12]. G ii{(jj) and G22(w) are the power spectral densities of the obser- 

vations Xi(f) and X2(0 respectively and ^12(0;) is the cross-spectrum. Using the 

above results it is straightforward to derive the cross-correlation noise power 

which is given by 

00 

<^«V) = -^  /G'„MG:22M(l-|7i2M|2)|vna;)|2(/c.  ,        T^Z) (9) 

|7i2(a;)p is the magnitude coherency squared 

r/m'^Ji Gu{<^)G^{u) 

Then from the defining relation 

SNRi = 

we obtain 

(11) 

1-^  / |Gi2(a;)|VfM</a;p 
SNR, = -^  (12) 

±. J G,,{u)G^{oj){l-\^,^{u)f)\W[ufdu 
-00 

The maximum is obtained through the Schwarz inequality and yields the H.T. 

processor for the pure delay channel. The same result is derived in [4] as the 

result of minimizing the local variance of the delay estimate over the entire 

G.C.C. class, and in [1] as the result of maximum likelihood estimation. The 

filter is 

ur       (  \ 1 l'Vl2MI^ 
^H.T. M =   1^    (.,      ,   ,      ,   ,,2       • (13) 

l<^12('^)l       l-|7l2('*')l 

Neglecting the effect of the signal and noise cross terms , C{T)*R^.{T) and 

i?3n (T)  in  Eq.  (5),  gives  another characterization of the noise  in the cross- 
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correlation domain. With this deHnition of noise another signal-to-noise ratio is 

defined in [6], SNR2, which is shown, for pure delay, to be maximized by the 

Eckart processor W^^^lcj) 

00 

[^  / \G,,(u;)\W{u)duj]' 

SNR,^ ^^  ■; ■ -   I    (14) 

2ir 
-00 

'"'■-'y" uf , 1 ■    |gi2(")i    y:'y:'-y<';y • y : , 

where C7„Jw) and G^J^u) are the autospectra of the noises n i{t) and njCO 

respectively. Note that in terms of the spectra of the observables Xi{t) and x^it), 

the filter takes the form 

(GHM-|G,2M|)(G22(a;)-|Gi2M|) 

Hassab and Boucher [2] take the approach of maximizing a signal-to-noise 

ratio, SNR 3, defined as the ratio of the expected peak energy at the true delay to 

the total statistical variation of the output of the G.C.C. This, in a sense, lumps 

the "signal", C{T)*R^ (r), variation into the noise terms and yields the H.B. filter 

CX) 

[~ / \G,,{uj)\W{u)du]^ 

SNR, = ^  (16) 

-^   !Gui^)G^(u)\W{ufdu 

Gii{u)G 22H 

The H.B.  is similar to the SCOT introduced by Carter et al [5] in that, for 
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highly dynamic spectra, in addition to suppressing the cross-spectral estimate in 

a>regions of low signal-to-noise ratio, high signal-to-noise ratio regions are also 

suppressed in an attempt to reject strong tones in the observations. 

Note that the above performance criteria impose equal penalties on small 

and large errors. That is the location of the false peak in the GCC output exerts 

no influence on the signal-to-noise ratios defined in Eqns. (11), (14) and (16). 

Therefore one can only rely on these criteria if the signal-to-noise ratio is suffi- 

ciently high to guarantee a low probability of large error. The behavior of this 

probability as a function of signal-to-noise ratio, observation time and signal 

bandwidth is investigated elsewhere [7,13). 

in. The Wiener Processor 

Here a different approach is taken to derive an optimal filter. We deal 

directly with the quantities in the observation time domain (i.e. Fig. 1). The pro- 

cedure is motivated by the following argument. If we knew the signal s{t) and 

the filtered version s^ {t) exactly, then, from the linearity of the phase of the 

channel, the time delay could be estimated exactly by detecting the peak of the 

sample cross-correlation of a{t) and s^{t). Therefore we simply try to estimate 

the signal a{t) as best we can from the observations x i(t) and the channel output 

signal s^ {t) from X2{t) by minimizing the mean square errors 

Eiisit) - 3{t)f} = min (18) 

E{{sAt) - sAt)f} = mm (19) 
where 

T 
s{t)= / Xi{(T)hi{t-<T)d(r (20) 

-r 
T 

«<,(0= / X2{<^)'^2ii-<^)d<J-  • (21) 
-T 
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The above procedure is illustrated in Fig. 3.   Given the channel characteristic 

C{oj) the solutions to Eq. (18) and (19) are the Wiener filters H i(u) and H2{oj) 

■^iM = TT-n-rT^ TT 22 

^2M= ^ . u^ M2 . ^—T:   • (23) 

Noting that Gi2(w) = 0(a;)G,^w) we can express the above filters in terms of the 

quantities derived from the observables 

//2('^) = C^a;)   -iHLl    . ..,■.; (25) 
<^22('^) 

where C^«(a;) is the complex conjugate of Cl[a;). 

With these filters the sample cross-correlation of the least mean square error 

estimates of a(/) and s^ {t) yields the estimate of the cross correlation function 

00 

where 

^'*^''(^) = ~    / y   S'{u)SAuj)ei-^duj (26) 
—00 

S{uj) = H,{uj)X,{uj) (27) 

S, (w) = H2{u)X2{uj) (28) 

Regrouping terms in (26) we obtain 

00 

fi»">(.)-_L  / 0.H    '"■fr", .   .'"^" (29) 

Comparing Eq. (29) with Eq. (6) we have the result that the W.P. is equivalent 

to using a Generalized Cross-Correlator with the filter W[uj) equal to the magni- 

tude coherency squared. 
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It should be emphasized that even though the Wiener filters Hi and H2 

involve the knowledge of the channel C{(JJ) itself the G.C.C. equivalent processor 

does not impose this requirement. In fact, as far as the cross-correlation estimate 

of time delay is concerned, the actual channel is immaterial to the peak detection 

procedure in the cross-correlation domain. Hence the Wiener filter implementa- 

tion (Fig. 3) with C{u>) arbitrarily set to unity in Eqns. (24) and (25) is equivalent 

to any other choice of C^u) for the time delay estimation problem. 

From Eq. (7) the variance of the cross-spectrum estimate C7i2(w) is propor- 

tional to the product of the auto-spectra of the observations <?n(u;)G22(w). Fix 

the sample auto-correlation R„{T) in Eq. (5). Then the definition of "additive 

noise" leading to the signal-to-noise ratio SNR,, Eq. (9), yields the interpretation 

ot i - |7i2('^)P as % measure of the cross-spectral estimator variance about the 

"desired signal" C{T) * R^ (r). Thus the W.P. de-emphasizes those a>regions 

where the sample cross-spectrum is likely to be a highly inaccurate estimate of 

the true cross-spectrum. This is not surprising given the raison <f etre of the 

W.P. which is to estimate accurately the smoothed sample auto-correlation, 

c{r)*Rssir). 

The W.P. does not of course maximize the signal-to-noise ratio in general. 

If we examine the optimal processor for SNR^, the H. T. (Eq. (13)), we see that it 

has the additional ability to overemphasize as well as to de-emphasize the cross- 

spectral estimate according to the function |7i2(w)|^/(l - |7i2(w)|^). (Actually in 

[4] the above function is shown to be inversely proportional to the variance of the 

phase estimate C7i2(w)/IGi2(a;)| with respect to the true phase of the cross- 

spectrum). However, in situations where the coherence is low, and the signal 

spectrum nearly flat, the H. T. and the W.P. are virtually identical and exhibit 

identical performance (Eq. (13) becomes proportional to \^i2?). 
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It is also observed that the W.P. is equivalent to the H.B. for nearly flat sig- 

nal spectra and also to the Eckart if we add a low signal-to-noise ratio condition 

The above signal-to-noise ratio condition is that C7„ (w) be uniformly small as 

compared to C?„j(w) and G, (w).  ■ V      \ >       >^;    ;  i^^^^ 

rv. The Robust Wiener Processor For Unknown Spectra 

The optimal GCC's all require knowledge of the signal and noise spectra 

underlying the observations. When the spectral quantities used in the filter func- 

tion for the GCC do not match the true spectra there is a consequent deteriora- 

tion in performance. Two approaches to the problem of unknown spectra are of 

interest. We either estimate the spectra and substitute the estimates into the 

aforementioned filters (totally unknown spectra) or we search for a robust solu- 

tion over a range of spectra perturbed from some nominal point (partially unk- 

nown spectra). 

For the estimation approach the sensitivity of the GCC filter to small devia- 

tions in the estimated spectra may be an important consideration. As applied to 

the H. T., the substitution method yields a procedure which weights the phase of 

the sample cross-spectrum, G i^i'^), with the function 

^H.T. i'^) = I 7i2MlV(l - I 712MP),  I ln{<^)\^ a magnitude coherency squared 

estimate. A simple local analysis of the estimation error associated with W^ ^ 

yields the variance 

var{lV^.3.. M) ^ ,,    ,   \  ,,2,4       f^K I 712(^^)1')   . (32) 
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Wffj'. may critically underweight the phase estimate over frequencies where 

|7i2p is high, that is where the phase estimate is apt to be the most accurate. 

On the other hand substitution of | 712!^ for ^^^ W.P. gives only as much error as 

the estimation error of | 7,2]^ itself. An improved filter estimate could translate 

into improved performance of the time delay estimate. Naturally these comments 

must be verified through a future simulation study. 

In practice the spectra may be only partially unknown and a different stra- 

tegy can be used to design the GCC. This is the "robust" approach which has 

been applied to classical matched and Wiener filtering with some success [8-10]. 

The resultant filters are robust in the maximin sense, e.g. the filter maximizes the 

minimum output signal-to-noise ratio as the spectra are allowed to vary over 

their regions of uncertainty. Usually, one first finds the signal and noise spectral 

pair which gives the least favorable performance, if it exists. Then one optimizes 

the filter for the least favorable pair, hence the name maximin filter. For a pre- 

cise formulation of the robust approach see [14] and [8-10]. 

To our knowledge, no results are known concerning the solution of the 

robust time delay estimation problem. Short of this the only known published 

result in maximin filters for time delay is that of Kassam and Hussaini [11] for 

the pure delay case. In [11] they used the fact that the Eckart processor maxim- 

izes a classically defined signal-to-noise ratio (See Eq. (14)) to relate the filtering 

problem to robust hypothesis testing. This is achievable only by associating 

uncertainty classes with the spectral product G^J^u)G„J^u), rather than with the 

individual noise spectra themselves. 

For the pure delay channel an alternate approach to combatting against 

poor performance with uncertain spectra is suggested by the recent work in 

robust Wiener filtering, [8],[9], when applied to the W.P. With regard to the ori- 

ginal formulation of the W.P., we can replace the least mean square estimates of 
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the channel input and the channel output by the robust least mean square esti- 

mates of s{t) and 3{t-D) under uncertainty in the signal and noises. Specifically 

we assume that the signal spectrum (7,, (w) belongs to the spectral class {<r}, 

and that the noise spectra G„^{<JJ) and G„J^ai) belong to the spectral classes {i/J 

and {rj^} respectively. Then we solve for the least favorable pairs for Wiener 

filtering {GJl{u) , GI{{U)} and {GJi{u) , GI{{UJ)} over the product classes 

{ffXrii} and {trXtiz) which yield the robust Wiener filters Hf and //f (see 

Eqns. (2.3) and (2.4)). Finally we implement these filters in the cross-correlation 

domain as a G.C.C., a scheme which we will call the Robust Wiener Processor 

or thei?.W^.P. 

V. Numerical Comparisons 

At the present time no simulation results concerning the experimental per- 

formance of the W.P. and R.W.P. as opposed to the other G.C.C.'s are avail- 

able. In their absence a preliminary investigation of the relative merits of the 

above processors was performed based on the various signal-to-noise ratio criteria 

defined in Section II, for some specific observation spectra and for the pure delay 

channel. 

Example 1 

Figs. 6 through 9 show the relative performance of the H.T.,H.B.,Eckart, 

SCOT, and C.C. under the criteria SNRi, SNR2, SNR^ and local variance, 

vari, of the time delay estimate [3], for a third order Markov signal in first order 

Markov noises with the noise 3dB bandwidth a factor of ten greater than that of 

the signal (see Figs. 4 and 5). These spectra were chosen for their tail behavior to 

avoid certain degeneracies in the local variance criterion. The interesting thing 

to note is that under SNRi and SNR 2 the  W.P. exhibits better performance 
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than all of the other sub-optimum G.C.C.'s for that particular definition of SNR. 

Under SNR^ it is a close second next to the M.L.E. In fact, under the criterion 

SNR I, performance of the W.P. is virtually identical to the optimal H. T. proces- 

sor. Although the local variance ranks the W.P. behind the H.T., H.B. and 

Eckart (see Fig, 9), it only marginally disfavors the W.P. at low signal-to-noise 

ratios (In Fig. 9 the SCOT and C.C. processors have orders of magnitude worse 

performance than the W.P. and are off scale), v 

Example 2 

Here the performance of the R.W.P., W.P. and other G.C.C.'s are compared 

using SNR j for the c-contaminated uncertainty class on the specific spectra in 

the example outlined in Kassam and Lim's paper on Robust Wiener filtering [9]. 

Specifically, under the nominal assumption , at each sensor we have a signal with 

the fiat bandlimited spectrum G,^ (w) in first order Markov noise with the spec- 

trum G^{uj), where the signal and noises are of comparable bandwidths (see 

Figs. 10 and 11), The uncertainty on the signal and noise spectra are modeled as 

the €-mixtures 

(l-£i)G'/.(a;)-h6,G'.;(o;) (33) 

and 

{l-i^)G^{u) + e^C; [u:] (34) 

respectively with (7„ (w) and G„ (w) arbitrary spectra having the same mass as 

the nominal and £i and ^2 lyi^S ui the interval [0,1]. When e^ = 0.2 and 

62 = 0.1 the least favorable signal and noise spectra are plotted in Figs. 12 and 

13 respectively. This corresponds to the case where one may have more confi- 

dence in the nominal noise than in the nominal signal. The least favorable spec- 

tra for this example illustrate a typical attribute of least favorables in that the 

worst performance of a Wiener filter occurs when the signal masquerades as the 
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noise and vice-versa, i.e. when we get a minimum separation of hypotheses con- 

cerning the presence or absence of the signal within the uncertainty classes (33) 

and (34). Fig. 14 shows the relative performance for the nominal spectra and 

Fig. 15 the performance for the least favorable signal and noise spectra for 

Wiener filtering. Looking at the nominal case we note that the use of the 

R.W.P. entails a loss of about 3dB at low SNR (below about Odb) over the 

optimal for the least favorable pair. However when the true signal and noise 

spectra are least favorable for Wiener filtering the R.W.P. displays uniformly 

better relative performance, gaining about 3db over the other processors at low 

signal-to-noise ratios. Note that the pair in Figs. 12 and 13 is not necessarily the 

least favorable pair for H.T. filtering so that no conclusive result is indicated 

here. However, Fig. 15 does suggest that, at least for some spectra in the above 

uncertainty class, we can expect better performance with the R. W.P. than with 

the optimal scheme for the nominal spectra. Therefore the WP and R WP instru- 

mentations may be viable alternatives to existing time delay estimation schemes. 

However, experimental investigations of these advantages will prove to be the 

ultimate yardstick of performance. 
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Performance of various processors under SNE3 
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Least favorable signal spectrtun for Ex. 2 
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Chapter 3 

The Center of Symmetry Estimator for Time Delay 

I. Introduction 

In the previous chapter, the Generalized Cross Correlator (GCC) estimate of 

time delay, given by the location in time of the global peak of the GCC output 

trajectory, was motivated from a SNR point of view. In fact, the Maximum 

Likelihood Estimator (MLE) of the time delay is implementable as a GCC, the 

Hannan-Thomson processor (HT), for the observation model (1) in Chapter 2 and 

sufficiently large observation time.. It is well known that, under broad conditions, 

the MLE asymptotically achieves minimum variance over all unbiased estimators. 

Hence, in the limit of large observation time, the GCC family, and specifically 

the HT, has a strong claim to supremacy over other methods. However, for finite 

observation time, the MLE can only be said to achieve a minimum local variance; 

that is, when the variation in the estimate is such that it is highly unlikely to fall 

outside of the immediate vicinity of the true delay at the global maximum. This 

assumption is especially tenuous when the spectra of the observations contain a 

narrowband component (2|. 

In this chapter an alternate estimation scheme is presented which, by design, 

takes into account non-local error and appears to be less sensitive to narrowband 

components. The idea is to substitute a center of symmetry estimate (CSE) of 

the cross-correlation function in place of the global peak estimate used in the 

conventional GCC, A general procedure is introduced which minimizes the 

energy in the asymmetric component of the GCC over an a priori known region 

of time delay. This is done by looking at the coefficients in a generalized Fourier 

expansion of the GCC trajectory. In particular, the Walsh expansion yields sim- 

ple procedures for estimating symmetry, the Local Center of Symmetry Estimate 

(LCSE), which operates on the GCC trajectory, and the Modulus CSE (MCSE), 
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which acts on the absolute magnitude of the GCC waveform. After deriving an 

approximate expression for the variance of the LCSE, for a general filtered sam- 

ple cross-correlation function, the filter is optimized to give minimum local vari- 

ance and is compared to the MLE. The optimal filter takes the form of a simple 

"matched filter" when the observation time is sufficiently large. The local vari- 

ance of the MCSE is then derived for the case where the second order distribu- 

tions of the GCC trajectory are known. 

Simulation results for narrowband spectra are next presented which indicate 

that, for the case considered here, the optimal LCSE has better large error perfor- 

mance, as compared to two popular representatives of the GCC class, the HT 

and the SCOT. 

The chapter is organized as follows. First the problem is stated and the dif- 

ficulty alluded to above is described when the conventional optimal processor is 

used. We then present the alternate procedures . A small error approximation to 

the variance of the LCSE and MCSE estimates is developed analogously to [3]. 

Optimization of the CSE weighting is performed for the LCSE based on the local 

variance approximation and a comparison of the local variance of the optimal 

GCC versus the LCSE estimator is undertaken. Based on the local variance 

expression a simple example is presented illustrating the difference in estimation 

philosophy between the GCC and the LCSE. Finally the results of a simulation 

of the CSE scheme against the two GCC processors are discussed. 

n.  Problem Statement 

As in Chapter 2, two Gaussian wide sense stationary processes x^{t) and 

12(0 ^^6 observed over a time interval [0,T]. However, here it is assumed that 

the intersensor transfer characteristic is pure delay, so that \C{w)\ ^ 1 in (1) of 

Chapter 2.  In other words,  Xi(<) and x^i^) ^^^ assumed to be of the form 
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X lit) = s{t) + mit) (1) 
X2it) = 8{t-D,) + n^{t) 

(Note the slight change in notation from Chapter 2 for the delay parameter). 

Here s(f) is a random signal with an autocorrelation function i?„(7) which falls 

off to zero for r greater than T^, the correlation time of the signal. The noises 

ni{t) and n^it) are uncorrelated and are taken as broadband with respect to s{t). 

Again assume that the sensor observation time, T, is much greater than both T^ 

and the maximum a priori deviation of D^ , D„ . 

The GCC estimate of time delay is, as before, obtained from the global max- 

imum over [-D„ ,D„ ] of a suitably filtered sample cross-correlation function 

(Here we assume coherent cross-correlation estimates are used). However, for 

notational purposes, we will specifically denote the GCC estimate as DQQQ to 

distinguish it from the other estimates introduced in this chapter. G i2( w) is the 

sample cross-spectrum obtained by Fourier transforming the sample cross- 

correlation R\2{T). The defining relations for the GCC trajectory and the associ- 

ated peak estimate of delay are repeated from Chapter 2 

oo 

,   RHr) = ^    ^  G,^{w)W[w)ei-Uw r€[-r,71 

■   : Dace =    argmax   (R^ [T)] (2) 

For the discussion to follow we will need to define the quantity T^' as the 

smallest number such that for a given a close to zero 

l^/.(^)l = I -^  / I^12(«')I W{rv)ei-^dw \<a (3) 

\r\> T; 

Tg   is interpreted as the a-correlation time of the filtered process 

s{t) * u;+(0 
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+(0 = —    f  W^{w)e''''Uw 
2v -oo 

and Vr'^(u;) has all of its poles in the LHP. 

W{w) = W+(w){w^{w)] 

Under an asumption of sufficiently large observation time, the MLE, for the 

unknown delay D^, takes the form of a GCC implemented with the HT weight 

(Eq. (13) of Chapter 2) [1|. This GCC has also been shown to minimize the local 

(small error) variance of any GCC estimate of delay [6|. Therefore, the HT will 

outperform any other estimator for sufficiently large observation time, and will 

locally outperform any other GCC. v- ; ^ 

The local variance is a measure which is only sensitive to "small errors"; it 

characterizes estimator performance for high signal-to-noise ratio in the immedi- 

ate region of the true delay D^. However, it significantly underestimates the 

actual variance when the global peak is likely to be far removed from D,, as can 

occur for even moderately high signal-to-noise ratio and narrowband signals using 

the HT [2). Thus the optimality of the HT can only be asserted in a small error 

sense. The maximum value of the trajectory of the HT is in general highly 

unstable in the sense that small variations in signal-to-noise ratio can translate 

into large and abrupt changes in the location of the absolute maximum (e.g. 

waveforms in Fig. 2.1 and 2.2). This discontinuous behavior of the estimate is 

characteristic of GCC's in general due to the peak detection based estimation 

procedure. It is this undesirable property of peak detection oriented time delay 

estimation schemes that motivates the subject of this chapter. 
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m. Center of Symmetry Estimates 

GCC type processors can be interpreted as estimators whicii utilize the pro- 

perty that, asymptotically, the cross-correlation function assumes its absolute 

maximum at the true time delay D^. Here we exploit a different asymptotic pro- 

perty of the cross-correlation to motivate another approach: the delay D occurs 

at the center of symmetry of the cross-correlation function. Essentially the esti- 

mation method involves extracting the asymmetric component of R^ about each 

candidate point D in the a priori region. Then the center of symmetry estimate 

is set to that point which minimizes the energy in this asymmetric component. 

The general procedure for estimating the center of symmetry is stated below. 

Let {Ejf (r), Oj^ (r)} be a complete orthonormal set of functions on an interval 

(-£/, L]. Here the Ei, 's are even and the Of. 's are odd about the origin. We now 

expand /?'' in a Fourier series over the length 2L interval centered at D, 

[D-L,D+L] 

RHr)=f:ei{D)Ei{T-b)+f:oi{D)Oi{T-D) (4) 
i-i 1-1 

Where we have defined the Fourier coefficients ef.{D), Oi,{D) of R^ correspond- 

ing to Ek {T-b), Oi {r-b) 

D+L 

e,{b)= J   R^T)E,{T-b)dr 
D-L 

(5) 
D+L 

o,,{b)=  J   R^r)Of,{r-b)dT 
b-L 

Now the first and second terms to the right of the equality in Eq. (4) represent 

the even and odd components of /?' about the point D. Because of the orthonor- 

mality of the expansion functions, minimimizing the energy in the odd com- 

ponent over D G \-D^ ,D„ ] is equivalent to minimizing the sum of the squares of 
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the 0,- {D). For practical purposes we minimize only the N-th partial sum of the 

squares of the odd Fourier coefficients to give the center of symmetry estimate 

N . 
DcsE = . argmin     J] |o,{Z>)|2 (g) 

As stated above the Center of Symmetry Estimate depends on quite a few 

free parameters: the set of orthonormal functions {Ei^, O^ }; the "window length" 

2L; the truncation parameter iV and the specific GCC weighting employed W[w). 

In principle one could select the orthonormal functions such that the symmetry 

information is concentrated in the first few terms of the Fourier series. L should 

be chosen to minimize the multiplicity of the local minima of the N-th partial 

sum in Eq. (6) in order to maximize the resolution of the CSE procedure. 

Here a specific implementation of the CSE will be analyzed and evaluated. 

This corresponds to choosing the Walsh functions over the window [-L, L] as the 

orthonormal set. The first three of these functions are shown in Figs. 3.1 a,b and 

c. As a particularly simple case we use only the first odd Walsh function in the 

family, Fig. 3.1b, to form the CSE. That is we take N equal to one in Eq. (6). 

The procedure then only involves evaluating the simple statistic 

D+L 
Ox{D) = -^    f   R^{T)sgn{T-D)dT     ' (7) 

^^    D-L 

Since the normalization by 2L has no effect on the location of the minima of o ^ 

we will often omit it. This particular CSE, which we will call the Local Center of 

Symmetry Estimate ( LCSE), merely takes the center of symmetry as that point, 

DcsB, which divides the area under R' to the left and right of DCSE into two 

equal parts. However due to the truncation of the infinite sum in Eq. (5) to a 

single term in Eq. (6) the general CSE procedure must be modified to take into 

account further properties of i? " at its center of symmetry, namely that there is 

a global maximum there for large SNR.   The actual procedure proposed uses the 
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estimate 

. (   median of  the upcrossings 
DcSB =\   of  oxwithia \-D^,D„] (^) 

An upcrossing of o j is defined as a point where o i(r) changes sign from negative 

to positive as r increases.  The median of a monotonic sequence yi, ^2) • • > ^n ^ 

defined to be y„       for n even and y„^.i   for n odd. 
T ■*"* "1" 

In regard to Eq. (8) refer to Fig. 3.2. The plausibility of the estimate is made 

clear by the following. U R' has a local maximum at its center of symmetry 

then OI(T) will upcross the origin there since the area identified with "+" 

becomes greater than that identified with the "-" in Fig. 3.2. In the case where 

R' is everywhere non-negative in the integration window and L is such that , 

asymptotically, R^T) la concentrated in [D-L, D+L] for all D e{-D^,D„], 

(e.g. L > Tg + D„ ), 0 I(T) gives a unique zero converging to D„. We are more 

interested in the case where the left and right tails of R^ do not significantly fall 

outside of the leftmost and rightmost integration windows [-D„-L-D^ +L] and 

{D„ -L,D„ +L] respectively ( See Fig. 3.2 ). In this case multiple upcrossings 

occur in o j. However, asymptotically, they are at locations which are symmetric 

about the center of symmetry of i? ' . Thus the median picks out the correct 

zero location of Eq. (7) corresponding to the true delay. 

In principle the window parameter L can be chosen to optimize the theoreti- 

cal and/or practical performance of the estimate. Indeed in the limit as L 

becomes small, L = A say, the LCSE can be looked at as a generalization of a 

peak discriminator, i.e. a GCC, by noting that, within a scale factor, we have 

from Eq. (7) (by the mean value theorem) 

,.RHr+^)-RHr)    ^dRHrl 
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Hence, for asymptotically small L, o i(r) upcrosses zero wherever there is a local 

peak of R' , obviously not a good attribute for our purposes. On the other hand 

if the maximum admissible deviation of D^ from zero, D„, is such that 

Dj„ +Tg <. T then one can integrate over the majority of the positive extent of 

the normalized R' by setting L = TJ . This choice should yield a statistic, o j, 

which has the least chance of getting hung up on a local maximum of i?". 

In view of the effect of multiple zeros on the LCSE discussed above it would 

be to our advantage to achieve a reduction in the number of zero upcrossing solu- 

tions to Eqns. (6) or (7). This suggests the application of the asymmetric com- 

ponent minimization, described above, to the absolute value of the GCC output 

trajectory. For definiteness we will concentrate on the LCSE procedure applied 

to the modulus of /? " . This estimate, denoted the MCSE, is obtained by finding 

the median of the locations of the zero upcrossings within [-/)„,, £>„, ] of 

D+L 

2L 
o¥i^) = ^    J   \R'{<T)\sgn{T-D)dT (10) 

D-L 

Note that for all of the above CSE methods, unlike the GCC estimates, a 

small random change in the detailed structure of /? " will not translate into large 

deviations of D^SE > since only large changes in the area under i?" (r), T > D^ or 

R^ (T), T < D„ can significantly change the location of a zero of Oi(r) or O^{T). 

This can be attributed to the fact that the CSE essentially smooths out spurious 

peaks in /? ^ . The next section is concerned with the local or small error proper- 

ties of the LCSE and MCSE families considered here. Based on these properties 

the optimal GCC weighting, W[w), for the LCSE, is then derived. 

rV.  Theoretical Performance of the CSE 

Throughout the following we will assume the following for the LCSE and 



MCSE and D„ the maximum a priori deviation of D^ from zero: 1) 

Tg « L « T; and 2) £>„ +L « T. Assumption 1 and 2 essentially con- 

strain the filter W[w) not to overly distort the spectrum |Gi2(«;)| so that the 

majority of the non-zero range of the mean GCC trajectory always lies within the 

integration window. 

Assuming consistent estimates of Gi2(«^), the GCC trajectory R^{T) will 

converge to the filtered signal autocorrelation i?„ (r) * W{T), which is symmetric 

about Dg, as T —*■ oo. Thus by assumptions 1 and 2, o |(r) and OI^{T), (Eqns. (7) 

and (10)) will display zeros symmetrically located about T^= D^, which implies 

that the CSE methods are asymptotically locally unbiased. 

For comparison purposes, we will derive the local variance of the CSE esti- 

mators under analogous small error assumptions used elsewhere for the derivation 

of the local variance of the GCC [3],[5]. Then the resulting expression will be 

compared to that of the GCC in the case of the LCSE. Finally an asymptotic 

approximation to the optimal GCC weight in terms of LCSE variance will be 

presented. 

For simplicity we let o j(r) represent the two CSE statistics for the LCSE, 

Eq. (7), and the MCSE, Eq. (9), We use essentially the same idea to derive the 

local variance as in reference [5|. Define the mean value of o i(r), 

Oi(r) = E[o I((T)| \ ff^r Now expand o ^{T) in a Taylor series about D^ retaining 

only the linear term explicitly 

oiir) = o,{D,) + [r-D,)     ^^ + O{T-D, ) (11) 
0 

Note that 0]{D^) = 0. 

Assume that o i(r) crosses through zero at r = P and that D lies in the linear 

region about D^ of o i(r), which will be referred to as the local error region, RL 
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(See Fig 4.1). That is D-D^  is small enough so that o{D-D^) terms in Eqn (11) 

can be neglected.  Take the variance of both sides of Eq, (11) to obtain 

var[oi{D)] = var[D] 
do,{D,) 

dD. 
(12) 

Now as a small error approximation, the deviation of Oi{D) for D G RL ^ ident- 

ical to the deviation of o 1(7) at T ^ Z?^ over the realizations of 0 i(r) having local 

zero upcrossings (see Fig. 4.1).  Hence, we obtain for the local variance of D 

var[oiiD,)] 
vati \D\ = 

^1^} 
(13) 

r—Z), 

which is analogous to the expression obtained for the local variance of the GCC 

estimate [5] 

dRHD,) 

(14) vai\Dacc\ — 

JdR^D,) \ 

E 
2, d^R' [D.) 

The denominator of (13) is simply computed 

j;   o,{r)\^j,^=2R'{D,)-R^{D,+L)-R'{D,~L) (15) 

Since R^ (t) is a locally unbiased estimator of i?„ (r) * W{T) \ ^^t-D  which is sym- 

metric about D„ 

E{ -|:   0 ,(r) I ^z?,} = [2i?„ (r) * W{T) - 2R„ [r-L) * u^r-L)] (16) 

By assumption L » Tg so that the second term in brackets in Eq. (15) is 

approximately zero. Thus the denominator of Eq. (13) becomes in the frequency 

domain 
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{j;  ''i(^)lr-z>,}=7   nGd^)\  W[w)dw (17) 

Even though we wish to apply the CSE procedure to narrowband signals, for 

the derivation of the local variance it is necessary to assume a large time- 

bandwidth product. The resulting expression will be seen, however, to well 

characterize the performance of the CSE even for narrowband signal spectra. 

Under these assumptions, R^{r) is approximately covariance stationary for 

T j^ D, (See Appendix C). Define <T{T,V), the covariance function of R^ (T) and 

R^{u), and the GCC spectrum, C{w). «ar(o^(I),, )| is computed in Appendix A 

for the LCSE. For large values of L the variance of the LCSE has the approxi- 

mate form 

-        ' go)! v^(o)|^ t""-i[Z)I = f 

-    / lG,2(u;)| W[w)dw 
IT         

T (18) 

An expression is derived in Appendix C for C{w), Eqn (C.4), which is, for w = 0 

where k is directly proportional to T, the observation interval. Substituting (19) 

into (18) and recalling the definition of the coherency 

.        L     g„(0)(722(0)(l + hi2(0)l^)|W(0)|^ 
««»"L ^ = -^ —: 7^— (20) 

00 

-    / I G,2{w)\ W[w)dw 

Note that since L is a fixed constant in Eq. (20) the LCSE estimate is consistent 

since A: -+ oo as T —*■ oo. 

If the two dimensional distributions ol R^  are known then the local vari- 

ance of the MSCE can be derived (See Appendix B).   Define 
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00 

^      -co    U 

00 00 

^    -00   «2 

The function /^r, (T) is the covariance function between | i?'' (r) | and | R^ {cr) |. 

Substituting Eq. (B.32) in Eq. (13) we obtain for the local variance of the MCSE 

varj^ D = 

f dT ! da v{7, a) 
c      c  

00 

7   / -T ^Din)du 
'^      -00    « 

(21) 

where J denotes the difference of the two integral operators 
C 

D^      D,+L 

.     / - / 
D,-L        DQ 

(22) 

Without further assumptions on the distribution of the GCC trajectory, Eq.  (21) 

is too general to be useful in indicating the performance of MCSE. 

For comparison we display the expression derived in [5] for the GCC estima- 

tor variance 

var^ Dace = j 

-^   J  w^\Gi2{w)\   W[w)dw 

(23) 

The quantity  G^ii(w)G'22(«')(l - I 7i2(«') I ^) I W^«;) | ^ can be interpreted as the 

spectral density of the component of i? " which corrupts the global peak at D^. 
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This is the correlator noise in the representation, (3) of Chapter 2, of the GCC 

output. Comparing the numerators of (20) and (23), it is evident that the vari- 

ance of the LCSE depends on the correlator noise variance only through the 

value of its spectrum in the immediate neighborhood of u; = 0, while for the 

GCC it varies as the second moment of the noise spectrum. This reflects the 

time averaging criterion which forms the crux of the center of symmetry esti- 

mate. In other words, only the average value of i? " (r) to the left and right of 

T= D are utilized by oi(r) in its search for a zero. The above comments imply 

that the (local) variance of the LCSE will be insensitive to changes in the 

detailed, i.e. high frequency, structure of the noise spectra as long as the average, 

or D.C., power remains the same. Thus a certain robustness to the underlying 

noise in the observations is indicated. 

Eq. (20) is a limiting form of the actual expression for the LCSE variance 

derived in Appendix A. In so far as the actual performance is well characterized 

by this asymptotic expression, it is clear that any weighting function W{w) pos- 

sessing a null (infinite attenuation) at w = 0 is optimal for the LCSE class as 

long as the denominator of Eq. (20) is finite, i.e. W['w) does not annhilate the sig- 

nal spectrum G„ {w). In particular a modified simple cross-correlator: VV(u;) = 0 

if G„ (w) = 0 or if «; = 0, V/[w) = I otherwise, would satisfy the optimality 

condition mentioned above. 

, The above simple optimizing weight arises from consideration of Eq. (20). A 

more accurate expression for the LCSE variance is given in Appendix A, Eq. 

(A.ll). Using Eq. (A.11) an optimal W, within the class of integrable frequency 

functions continuous at the origin, «; = 0, can be derived for large L and the 

additional assumption of smooth C{w). It has the form 
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where 

6L{w) = 2Lsinc^{Lw) (25) 

The filter W{w) of Eq. (24) is derived using the observation that, for sufficiently 

large L, Si(w) is either less than e or larger than 1/e except over frequency inter- 

vals with aggregate length less than 2/\/7L. In (7, Appendix D| this is shown to 

imply that the numerator of the local variance expression, (A.11), can be replaced 

by k J {l+C{w)Si {w))\W{w)\dw with only a small error.   For L very large, 5^  in 
-00 

Eq. (24) \s essentially zero over all frequency except in the neighborhood of the 

origin.   We will investigate the performance of the limiting form of Eq. (24) 

/::,.;..::.;:.:/:\.-./.;;:;:   ;    w{w)=G,Aw) ^S;^v::■;/:;;>;;: (26) 

where we have neglected the notch at «; = 0 of Eq. (24). The filter in (26) is 

matched to the spectrum of the signal. For convenience, we shall refer to it as a 

matched filter. This does not define a matched filter in the conventional sense 

since the signal is non-deterministic and no prewhitening is employed. 

The two "optimal" procedures mentioned above will be investigated in the 

this paper. One, W{w) ^ I over the region supporting G„ [w), will be referred to 

as the cross-correlator (CC) and the other, given by Eq. (26), the matched filter 

(MF) versions of the LCSE, or the CC-LCSE and MF-LCSE respectively. We 

now present a simple example for the optimal LCSE in the case where the obser- 

vations have flat spectra. 

Assume the signal and noise spectra are flat and strictly bandlimited 

G.A^) = s^ \tv\ < B/2 

=    0 w\> B/2 

w   <BJ2 

=    0 \w\> BJ2 

(27) 
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For the above case the CC-LCSE and the MF-LCSE give identical local variance 

expressions. An optimal weight is thus W{w) = 1 within the non-zero region of 

G„ {w) and W{w) = 0 elsewhere. From Eq. (18) we have the optimal LCSE local 

variance 

1 + hi2p   ^L 

|712P        2kB' 

A ^ ^ I '12 ITL 
^'^^LD^      ,^_ -—^ (28) 

and for the H.T. processor, the optimal local variance for peak detection is 

1 - hill    _247r 

hiaP      kB 
-,P^.,. =i^lJ^   ill (29) 

The local variance of the LCSE is in general higher than that for the H.T. pro- 

cessor since the H.T. achieves the Cramer-Rao Lower Bound locally. As expected 

from the preceeding comments, the presence of a high signal-to-noise ratio, i.e. 

high coherency, will favor the H.T. because of the term 1 - \^i2{w)f in (29). 

However, at low signal- to-noise ratio, both the optimal LCSE and the H.T. vari- 

ance behave as the inverse of the coherency. It is important to note that the 

expression for the H.T. variance behaves as inverse bandwidth cubed while for 

the LCSE it behaves as inverse bandwidth squared. Consequently, as far as the 

small error performance is concerned, the LCSE should perform comparably to 

the H.T. in cases where the signal-to-noise ratio is moderate and the bandwidth 

of the signal is small. Because of the instability of the H.T. estimate for precisely 

this combination of signal-to-noise ratio and bandwidth (see the discussion in Sec- 

tion n), the expression for the estimator variance, Eq. (29), can underestimate the 

true variance of the estimate by orders of magnitude [2],[4]. Due to the smoothing 

effect of integrating the GCC trajectory, the local variance of the CSE, Eq. (28), 

may more accurately reflect the actual performance of the estimator than does 

Eq. (29) for the GCC. Therefore the potential for superior performance of the 

LCSE scheme may well be underestimated by Eqs. (28) and (29). 
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y. Simulation Results 

For the present we are interested in the performance of the LCSE scheme for 

narrowband signal spectra, that is the low time-bandwidth product situation. A 

preliminary experimental investigation of the relative performance of the LCSE 

and the GCC b reported here. 

We synthesized two sensor sequences which contain a common narrowband 

component in two uncorrelated white Gaussian noises to exercise and compare 

the HT and the SCOT processors with the CC-LCSE and MF-LCSE discussed in 

Sections III and IV. Specifically we first generated a unit power Gaussian signal 

r{k) with periodic spectrum on (-«", r| via the autoregression 

r(i) = A, rik-S) + Aj r{k-m) + a w(k)  , it = 1, 2, . . . (30) 

where w{k) is a white Gaussian pseudonoise sequence and hi ^ 1.77 A2 = -0.86 

and a ^ 0.17, Then r{k) was passed through a sixth order elliptic filter to yield 

a lowpass signal z{k). Finally z{k) was modulated onto a sinusoid to give the sig- 

nals s(/r) and 5(/:-Z>^ ) 

s{k) = y/2{Si + s, 4k))sin{2vfk + <l>) it = 1, 2, ... , 5120       (31) 

Here / = 0.017, ^ is a random initial phase uniform on [-ff,ff] and s^ and s^ are 

the power in the deterministic carrier component and the random component of 

s{k) respectively, s^ and s^ were chosen to give a carrier-to-signal power ratio 

(CSR) of -20dB for the amplitude modulated (AM) waveform in Eq. (31). The 

spectrum and autocorrelation function of s{k) are shown in Figs. 5.1. and 5.2 

respectively. s{k) and s{k-D) were then contaminated with mutually uncorrelated 

zero mean white Gaussian noises n j(Ar) and n2(Ar) to form the two records 

xi{k) = 8{k) + nj,ni{k) (32) 

it = 1, 2, . . . 5120 

X2{k) = 3{k-D)+ n  n^{k) 
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D^ was set to 25 for the duration of the simulation. The 5120 samples con- 

tained in the above two records were divided into 5 distinct groups and the aver- 

aged cross-spectral estimate was constructed using the Bartlett procedure. This 

estimate was then weighted with the HT, SCOT and MF weights displayed in 

Eqns. (5), (6) and (24). Since the autocorrelation function of the signal s{k) does 

not fall off to zero within [-511, 512j, see Fig. 5.2, the local center of symmetry 

estimator was implemented. The maximum length integration window was used 

for the LCSE when a priori the true delay lies within 50 bins of the 0-th bin. 

That is we summed over 451 bins to the left and to the right of each point in the 

interval [-50,50]. For the SCOT and HT, peak detection was performed and for 

the MF-LCSE and CC-LCSE, Eq. (7) was implemented in discrete time over the 

a priori region. The above procedure was repeated 100 times for each of 25 

signal-to-noise ratios (SNR) between -50 and 40 dB. 

Three statistics were computed at each SNR for each processor: the square 

root of the mean-square-error (MSE) of the estimates; the mean; and the 8 bin 

frequency deviation, i.e. the number of estimates falling within 8 units of the true 

delay at 25. These curves are shown for the three schemes: the SCOT; the HT; 

and the MF-LCSE in Figs, 5.3 through 5.5 respectively. 

Referring to Fig. 5.3, for SNR above about -5dB; large errors become insigni- 

ficant and the HT outperforms the others; but by only 1 bin in the case of the 

MF-LCSE. As the SNR falls below the small error threshold the MSE perfor- 

mance of the HT deteriorates rapidly with respect to that of the MF-LCSE. The 

curves in Fig. 5.4 indicate that, on the average, below the -5dB threshold the 

SCOT has already lost all delay information, giving randomly distributed esti- 

mates across the entire interval [-50,50]. Indeed the SCOT procedure breaks 

down much sooner than either the H.T. or the MF-LCSE, exhibiting a threshold 

at least lOdB higher than the others.   The MF-LCSE picks up a greater amount 
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of the underlying structure in the GCC waveform which prevents the type of 

deterioration evident in the case of the SCOT. The performance of the HT, rela- 

tive to the average of the estimates, falls somewhere in between the SCOT and 

MF-LCSE. Finally Fig. 5.5 illustrates the performance of the three schemes rela- 

tive to the small error performance measure, the frequency of the less than 8 bin 

deviations. For each of the 100 experiments, we plot the percentage of estimates 

within 8 bins on either side of the true, bin 25. This gives an indication of the 

percentage of time that the estimate can be expected to give only small errors. 

Except at the threshold, where a small increase in performance of the MF-LCSE 

is evident, the HT and the MF-LCSE have virtually identical small error perfor- 

mance, both significantly outperforming the SCOT at all SNRs tested. 

In Figs. 5.6 and 5.7 the CC-LCSE experimental performance is displayed. 

From Fig. 5.6 it is evident that there is virtually no gain in MSE performance 

over the HT; however it does outperform the SCOT at high SNR. The mean 

curves. Fig. 5.7, indicate that at low SNR, the CC-LCSE still takes advantage of 

symmetry structure of the GCC trajectory to yield, on the average, better esti- 

mates (by 2 or 3 bins) than the GCCs. The poor performance of the CC-LCSE, 

and the other GCCs investigated here, reflects the sub-optimality of any W{w) 

which does not specifically attempt to maximize the denominator of Eq. (20). 

The modulus CSEs (MCSE) were also included in the simulation. However 

they failed to give solutions to the zero location problem, Eq. (10), for about half 

of the 100 tests at low SNRs and the results are omitted from this study. Of 

course this is not a conclusive indication of the potential performance of the 

modulus CSE techniques since the MF and CC weights are not optimal in the 

sense of minimizing local variance. The specific optimization of the MCSE vari- 

ance expression should yield estimators which give a more favorable standing to 

the MCSE than that resulting from the present simulation study. 



YI. Discussion 

In this chapter several forms of the center of symmetry estimator were 

presented, which are simple modifications of the Generalized Cross Correlation 

method for time delay estimation. A particularly simple family of CSE pro- 

cedures, the LCSE's, was obtained by using a Walsh expansion to characterize 

the asymmetric part of the GCC trajectory. Based on an optimization of the 

variance of the LCSE over GCC filters, W[w), an optimal filter function, the 

"matched filter," was derived. Even though the target performance functional, 

the local variance of the CSE, may not be valid for large errors, the resultant 

optimization produced estimates which seem to possess better large error perfor- 

mance than the GCC techniques for narrowband signal spectra. It is believed 

that this follows from the fact that the LCSE is less sensitive to peak ambiguities 

than the GCC for narrowband spectra. 

The local variance analysis indicates that in general the GCC is a more 

accurate estimator for small errors than the CSE. This is also evident for the 

LCSE from the simulation results discussed in the preceeding section. One possi- 

ble estimation strategem would be to use the GCC and the CSE in a hybrid 

manner. Using the CSE, one could obtain initial rough estimates for the location 

of the (local) peak in the GCC trajectory which actually corresponds to the true 

time delay. This would be a variant of a "gated mode" implementation of the 

GCC. That is one would censor the GCC output outside of some region deter- 

mined by the rough estimate obtained using the CSE, and estimate the delay as 

the location of the highest peak within the gated region. Further study of this 

and other uses of the CSE remains to be undertaken. 
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APPENDICES 

Chapters 

Appendix A 

Here the expression Eq. (18) is computed assuming /?''(r) has covariance 

given by (C.13) in Appendix C. First compute the variance of o ^{D,) defined in 

Eq.(7).      . 

var[o ,(Z), )| = var 
D, D, +L 

/     R^T)dT-     J     R'(T)dT 
[D.-L D. 

(Al) 
D,      D, D, +1 D, +L       D,    D, +L     D, +L    D, 

!   S * I   i - I   I - !   I 
D. -L D, -L D,       D. D. -L    D, D,     D. +L 

drda  eov[R'(r),R'{(T)\ 

In Appendix C it is shown that for sufficiently broadband signals, s{t), i?i2 is 

covariance stationary except at points r very near D^, say r G {D^~, D^'^].  In any 

case the difference between the covariance functions involving R "   within the 

immediate neighborhood of the true time delay and outside of that neighborhood 

is bounded by a factor of two 

{cov[R i2(P, ),R i2{D, +T)]/COV[R M,^ dn+r)] < 2 ,    »/ 5^ DJ.   Hence we can 

consider the evaluation of the integrals in Eq. (A.1) over regions which do not 

include (D/,/),"''] without significant change in the resulting variance expression 

if the signal is broadband. Accordingly define the spectrum C{w) of R 12(7) 

00 

C{w)= f  cov[Ri2iT,),R,2{Tj+T)] t-i^'dT 
-00 

R ' then has the spectrum C{w)\ W{w)\^ and the correlation function 

1      ~ 
P{T) = cov[R' {<T),R " {(T + r)I = —   / C{w)\ W{w)fdw 

We can rewrite Eq. (A.1) with the obvious definition of regions 7i, 73, 73 and 74 
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to obtain 

var[o i(Z), )\ = ij + J-J-f]dA   P{T-<T) .(A.2) 
I 1i       Tfa     73     74/ 

where dA = dr da. 

Making the change of variable v = T-<r, the regions 7^, 73, 73 and 74, in Fig. A.1, 

are mapped to the regions 7i , 72 » 73 and 74 , in Fig. A.2, where, for purposes 

of clarity, D^   is assumed to be positive.  We thus have 

var\ ■{oiiD, )] = i f + f - f - J)dA' ■ p{v) (A3) 
I  7»        72       78       7«   1 

where dA'= rfr </». 

We will deal with the four above integrab individually by integrating first over r. 

Consider the integral over the region 7i   in Eq. (A3) 

0 H-A ■ ■£■" ^ 

J p{v)dA = J dv   j    drp{v) + J dv     f     drp{v) 
■ -h -i        D,-L 0 v+D,-L 

L 

= / (L-UI) p{v)dv (A4) 
-   -I 

Likewise for the region 72 

0       •+A +i L      D, +L 

J p{v)dA = J dv     J      drpiv) + j dv    /    dr p{v) 
72 -i D, 0 v+D, 

L 

= / (L-l vl)  p{v)dv (A5) 
-L 

And for 73 

/ p{v)dA' 
73 

-L 9+D, +L 0 D, 

= J  dv     /      dT p{v) + J dv   J    dr p{v) 
-ZL D,-L -L        v+D, 
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-L 0 

= / (tH-2L) p{y) dv+ J {-v) piv) dv 
-2L -L 

(A.6) 

In a similar manner for the region 74 

/ p{v)dA' 

■ .^/... ■■    It 

= f {-V + 2L) p{v) dv + J V p{v) dv (A.7) 

Note that /j(t;) = 0 for I t; | > T/ , where TJ is defined in Eq. (3). Therefore if 

L » T^ the first term in Eqns. (A.6) and (A.7) are negligible. Performing the 

indicated algebra in Eq. (A.3) using Eqns. (A.4) - (A.7) with the above assump- 

tion we obtain 

var[oiiD,)\ = 2L f {1- 
■     -L 2L 

) p{v) dv (A8) 

m 

var[oi{D,)] « 2L / p{v) dv 
-L 

(A9) 

Finally, combining Eq. (A.9) with Eq. (17) and substituting into Eq. (13), we have 

L 

var^lD]  =   ^   -' 
/ (1 - ■'^   ) P{v) dv 

2     {R.Ar)*w{T)\^o] 
T (A 10) 

Since p is symmetric and L » TJ the numerator of Eq. (A. 10) can be con- 

sidered as the convolution of p(r) and (1 - \T\/L) evaluated at r = 0. Or in the 

frequency domain we have 

00 

-00 

j^    J di^{w)C{w)\W{w)\^dw 
var, [D] = I 

^   7  G„ W{w)dw 

(All) 
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where 

8i = 2L8inc'^[wL) (A.12) 

.   / .       sin(x) 
X -  -       ■ 

In the limit of large values of L Eq. (A. 10) 

2 00 

^   /  G., M«^)rf«' 
-00 

(A. 14) 

Appendix B 

Here the local variance of the MCSE, Eq. (21), is derived when the second 

order distributions of /? ' are known. We first need a result on the characteristic 

function of the modulus of a random variable. 

Let X be a random variable with density function fx{x) and infinitely dif- 

ferentiable characteristic function ^x(0- Then the characteristic function, ^m, 

of the absolute value of Jf is given by 

<i>\4t)='R^<f>x{t) + iH[Re(i>x[t)] (B.l) 

where H (Re <t>x{i)] is the Hilbert transform of the real part of (t>x[i) 

HUt)] =1   / ^   </« (B.2) 
-00 

Furthermore, the moments of |J^ are given by 

d^^xit) 
dt' 

E{1^2, j ^ _^   (_!)„ (B_3j 

CX) 

E{|jq2-»} = -(-1)- 1  / illLilL ^^(„)rf„ 
-00 

To show this we first need a couple of preliminary results.  One form of the Dirac 
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delta function is the integral (Cauchy principal value) 

/ e*^ dx = 2ir6(t) 
-00 

which has the property that for any integrable function g{t^) 

(B.4) 

/ 

00 

■"-'•I' M 
-00 

ij(t)dt = y(f o) • 2T (B.5) 

We can obtain a useful characterization of Eqn (B.4) in the context of Cauchy 

integration in the following way. 

Consider the contour integral for f < 0, / c '** dz, where r is a complex vari- 
..., .        . .   ,,   ..., . c     ... . . .■•■..,- 

able and C is the contour of Fig. B.l. 

Ms 

Rez 

Then by the residue theorem 

2;ri 
T   / e '*" dz = 0 

R 27 

2ffi 2X1 

Now 

(B.6) 

I  g i'(«i?e'*+*) I  <  I  g il+itR cos * I  g-«/? sin * 

<     g '^        /or 5 G [^, 2:rl 

Therefore combining Eq. (B.6) and inequality (B.7) and taking the limit 

(B.7) 
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lim   / e**'dx\   <    lim Re'^ =0 (B.8) 

(OT t  <0. 

For f > 0, just use the mirror image of the contour in Fig. B.l to obtain the 

identical result. 

For the case f = 0 

lim   / e •■" dx = Um  2i? 
i?—00 -R i?—00 

(B.9) 

Or comparing Eqns (B.4) and (B.9), we have the identity 

lim  l{t) R = ir6{t) 
R--O0 

(B.IO) 

where 

m i    1      t=0 
^\   0     MO (B.ll) 

The above identity will enable us to show the following fact 

00 

/ « '■« dx = x<5(«) + « -   (!-!(«)) (B.12) 

where the imaginary part of Eq. (B.12) has the interpretation: —   (l-l(«))   is 
u 

equal to zero for «^0 and equal to —   , otherwise.   Consider the function of a 

complex variable:   c '"*.  This has a pole at z := -3gn{u) too. 

For a > 0, we consider the contour integral over the path C shown in Fig. 

B.2. 

Imz 

Rez 



53 

Then we have 

2ni 
(B.13) 

1     ^    . 1 1     ''^ 
2ff» 2n-i 2ri 

First compute I^ 

= /^ + /i + /j 

ir/2 

2n-f 

ir/2 
_.   ^»       r   g -«/? sin * g i(tii? cos *+#)^^ 

2Tt 

Note, that since « > 0, /j —» 0 as i2 —♦ oo.  /2 is however, non-zero 

'^       2:ri     i«   ' ^ 
or as /? —♦ oo 

/,-- 
t      1^ 
t»    25ri 

(B.14) 

{B.15) 

(B.16) 

(B.17) 

giving the result from Eq. (B.14) . 

(B.18) 
00 

lim   J-^   / e '■«' dz = -^   / e*** rfx -  lim  -^   1(«) - —   i -   [ 1-1(«)) 
i?-.oo 2;r»   ^ 2ffi   ^ ^-oo 2xi 2xi       «   ^      ^ " 

We use Eqns. (B.13) and (B.IO) to obtain from (B.18) 

00 

/ c '■« dx = ir6{u) + f 1   (l-l(«)) (B.19) 

Note that formally 

00 00 

/ c '■ «* rfx = / 6 '■'« dx + 
-00 0 

00 

/c'-dx 
0 

2ir5{u) (B.20) 
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as expected. 

The result for « < 0 falls out of the above by considering 

0 

00 

/ e 'M' dx 
0 

= T:6(u)-i±-   (l-l(«)) 
« 

= x5{«)+ I 1   (l-l(«)) 

(B.21) 

Now we show the main result, (B.l) and (B.3), for the characteristic function of 

the modulus of a random process Xwith fx{x) and <i>x{t) the density and charac- 

teristic function of X, that \s, X '^ /x(^)» ^^^ ^x(0 = E{g ''^}. 

00 

<t>\4t) = / e^''fx{x)dx + J  e-'''fx{x)dx 
0 
00 

(B.22) 

= 1 e''*[fx{x) + fxi-^)]dx 
0 

00 

= / 
, ixt 

00 

00 

-^   I «-'■'«[ ^x(«) + 0x(«)]''« 

~    / Re^x{»)\ I e''^*-''Ux du 

dx 

By (B.12), for t -Uf^O; 

.    1 

Hence, 

0 '~^ 

00   Re[,^xi^)] 
<l>\4^) = Re{^;^(0} + « ^    /   ^    du 

'^    -'oo ^-« 

(B.23) 

(B.24) 

= Rete(0} + .-i/(Refc(0}) 
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It is well known that if X has moments of all orders 

d"      ^.   ixt 
dt 

E{e'^'}N_o = (0" E{X»} = 
(-1)2   E{X"} n even 

I    (-1) 2    ,• E{X»}       n odd 

Therefore, we can calculate the moments of |J^ 

(-ir £;{IJq2»j^ _W£Ui   |^_^ + .-J-  JM_   Re^;,(„)rf«(B.25) 

By the symmetry of the real part of ^xl") about zero the second term on the 

right hand side of Eqn (B.25) is zero. Noting that the the imaginary part of an 

even derivative of 0^(0 is zero at / = 0, Eqn (B.25) becomes simply 

■\2n \ IJ2— 
a<2» (-1)" nW)=      ^,Z        \t-o (B.26) 

as expected.  Likewise 

The first term on the right hand side of (B.27) is zero, therefore 

E{lJq2»-»} =-(-l)- 1   / i^I^   Re0x(«)rf« (B.28) 

Since the imaginary part of 0x(") ^ ^^^ ^® have as a final result 

E{m2«-lj _ _(_!),  1    J   {2n-pi   ^^^^^^^ ^^29) 
-oo 

From Eq. (B.3), the expected value of the modulus of the G.C.C. trajectory, 

I i? ' (r) I is known if the characteristic function of i? ' (T) is known. Defining Z 

as 

Z,,,= |i?MO^'(r)I (B.30) 
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Eq. (B.3) gives the autocorrelation function of | i?' (<T) | if we know the two 

dimensional characteristic function of i?" (f), i?'(r).  Define 

K<, r) = £{ V - £{ I i?MO I } ^{ I i?Mr) 1 } 

Then from (B.29), ^ :); 

00 

E{\R'{t)\} = ^   / -V   *'(«)^« 
oo 

^      -00     «'' 

00 t ^ 

^    -'co   «2 

(B.31) 

(B.32) 

Substituting the above equations into the expression Eq.  (13)  gives the 

result, Eq. (21). V---;-//-i-?;.'::::J ^;^^;':-:^ 
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Appendix C 

Here the covariances of the sample cross-correlation R I2{T) and the GCC 

trajectory /??2(^)» Eq. (2), are derived. It is then shown that the above two 

correlation functions are approximately covariance stationary outside of the 

region [-T^ +DQ, Tg +DQ], where PQ is the true delay parameter. We will 

specifically assume that the waveforms Zj and Xj are Gaussian random processes 

as given in Eq. (1) with spectra (?„, 0^2 and cross-spectrum G i^- Define T, 

the signal correlation time. 

Let W{w) = l in the expression for the GCC trajectory, Eq. (2). Then the 

cross-correlation, ^ 12(7), is 

^M = --   E     /     -7   ^ikir)x2k{<T+T)da  ,    Te[-D„,D^]   (C.l) 

Define the covariance 

<T,_ ,+, = eov{R 12(11), R i2{n+r)] (C.2) 

Since T/k » T^ the mtegrals in Eq. (C.l) are approximately independent 

and the covariance operator in Eq. (C.2) commutes with the summation in Eq. 

(C.l) to yield 

''',,n+r=-^    t  <=ov{R'l2iri),Ri2{ri+r)]   ,    r e [-D„, D„] (C.3) 

Tk 

where i {2(1/)=    /    xu («T) Z2A (<T+f;)rf(T. 
7I*-1) 

For simplicity, we will take m to be unity in Eq. (C.3), the result for the 

general case follows directly.  Thus Eq. (C.3) becomes 

T        T 

% n+r = ! da f du eov{xi^ [a) ijjt {<T+t]), Xn, («) 13* [ti+V+r)]      (C.4) 
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From the Gaussian and zero mean assumptions imposed on Xj and X2, we can 

express the covariance under the sum in Eq. (C.4) as 

eov{xii,{<T)x2k{<T+ri),Xik{n)x2k{n+i1+r))= (C.5) 

= E{ZH(<T) Xi4(«)} E{x2*(<^+'7) a:2*(«+f?+r)} 

+ E{a?ijk (<r) xjjfe {«+t/+r)} E{x2jfe (<r+f?) X It («)} 

= R ii(«-<r) R22(r+u-<T) + R dn+r+n-ir) R i2(>7-(«-<^)) (C.6) 

by  stationarity.    Substitute  (C.6)  in  (C.4)  and  make  a change of variable 

^ = «-<y so that 

.-.    •■ ; ■ (C.7) 
r r 

^r,, r,+r = Y   /  [^ uiO R di+r) + R ,2(»7+r+0 R ,2('^0] •    1--^ d^ 

Now for a fixed rj, take the Fourier transform of both sides of Eq. (C.7) to obtain 

after some manipulation 

/ <r,,,+,.>'rfr= (C.8) 
-00 

If r » T^ + D„, then the factor [ 1--^   | in (C.7) is approximately unity 

throughout the non-zero region of the integrand.  In this case, 

00  _ _ 

,.,+r = -j—    /   [ GnM G^^) + GM^) e^^"-] e^^^dw       (C.9) ^r,. 

For the general case, m greater than unity, \I T/m » T^ -^-D^  then from the 

stationarity of x^ and X2 the sum in Eq. (C.3) is over identical quantities given 

by Eq. (C.9).  Therefore 

00 _ 

^, r,^r=-^   /   [GnM G22H + G^rv) c^^"'" J e^'-^dw      (C.IO) 

Let s{t) be a bandlimited white noise of bandwidth 21:/T^.  Then 
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-^   J G^2(^)e^^''' e^'^^dw = K8inc{ii2{n-D,)+T)/T,)        (C.ll) 

where K is & constant proportional to the signal power. Since 3inc{x) falls off 

rapidly for |x| > T^ to a good approximation for t], tj+T outside of the interval 

[D, -T,,D, + 7;] we have 

00 

^^^       H^ '"'^"^^^^   J  GnMG^{w)e^-^dw       , (C.12) 
—00 

That is, i? 12 is stationary over the above region. Depending on one's definition 

of Tf, for a general signal, stationarity will hold for sufficiently large |TJ . 

It has been noted elsewhere [5] that for a general real GCC wieghting, \\\w), 

the GCC is equivalent to passing the waveforms ij and Xj through filters Hi 

and Hi respectively, where Hi Hi = W, and cross-correlating the outputs. 

Therefore for the GCC implementation 

00 
m 

<T,,,^r = Y27   /   [ ^nM G^{w) + G 2(«;) e^^""] \W\w)f a>'rf«(C.13) 
—00 

where it is assumed that T/m » D^ + T^    and T^    is as defined in Section H, 

Eq.(3). 

In the derivation of local variance, undertaken in Section FV, the signal s{t) 

is assumed sufficiently broadband so that its trajectory can be taken as station- 

ary except in the immediate neighborhood of the true delay parameter D„. If 

W{w) does not cause significant spreading of the signal auto-correlation function 

then we can approximate the covariance of i? ' by       ^ 

00 

^r,,,+r = -^   /  Gniw) G22(M |Vntr)|2 ei-^dw  , \f,\ > D, (C.14) 

and for TJ = D 
T2^   -co 

'^,.,+r=^    I   [Gii{w)G^{w)+\Gi^{w)f\\W{w)\^e^--^dw    (C.15) 
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Thus we can identify a GCC "spectrum" 

C{w)=Gn{w)G22iw) + \Gi2{w)\l{Ti-D,) (C.16) 

here l(r) is the indicator of r = 0. 
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Chapter 4 

On The Asymptotic Form of Level 

Exceedance Probabilities 

I. Introduction 

The distribution function of the number of crossings of a level by a random 

process in a given interval is an important, but difficult to obtain, function which 

has received considerable attention in recent years (8). Explicit results are known 

only for a handfull of specific random processes, e.g. the Markov class. In this 

chapter a general representation for the probability of getting one or more level 

upcrossings is obtained for a wide class of random processes, which allows the 

deviation of this probability from the probability of getting one or more points 

from an inhomogeneous Poisson process to be characterized. This representation 

is then exploited to show a limiting result analogous to results obtained by Lead- 

better using extreme value theory for stationary processes [7|. Specifically, we 

assume certain asymptotic conditions on the trajectories of the process such as 

mixing. It is demonstrated that if the upcrossings of zero are made to become 

progressively rarer events, in a sense to be made clear later, then a normalized 

version of the number of upcrossings as a function of time converges in distribu- 

tion to a Poisson process. Although the assumptions necessary for the proof 

reduce to somewhat stronger conditions on the random process than those of 

Leadbetter [7] for the stationary case, the result extends the asymptotic theory of 

level crossings to a certain subclass of non-stationary processes. 

Results of the above type are of interest in connection with maximum likeli- 

hood parameter estimation when large errors may be significant. As is well 

known, the Cramer Rao Lower Bound only characterizes local error; that is, when 

the estimate is in the immediate vicinity of the true parameter [11]. When the 

trajectory of the so called "likelihood function" is predisposed to display multiple 
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widely separated maxima over the parameter space an additional large error 

measure is needed. One possible choice is the probability that a section of the 

trajectory exceeds a threshold, specified by the height of the trajectory at the 

true parameter. This probability can then be expressed within the framework of 

level crossing probabilities. Based on the results of this chapter, a Poisson 

approximation will be used in the next chapter to model the large error behavior 

of the maximum likelihood estimator for time delay. 

11: A Representation for the Probability of Up-crossings. 

Let (A, ^, P ) be a complete probability space and define the nested 

sequence of cr-fields : ^t , t £ R , { ^t C. ^ , ^, C ^„ for a < «). We 

assume the $(-measurable random process X{t), -oo < < < +00, to have the 

following properties: separability, almost sure (a.s.) sample function continuity, 

existence of the bivariate densities of X{t) and X{T), ft^jiv^z), for t 7^ r. Addi- 

tional properties will be imposed shortly. 

We define an upcrossing analogously to Leadbetter in [2]. A realization of 

X{t), x{t), upcrosses zero in the interval [<T,i/) if there exists an open interval cen- 

tered at some point t^ G {<r,i^), {t„ - S, t^ + S) say, over which X{t) < 0 to the 

left of t^ and X[i) > 0 to the right of t^. We denote this occurence by the nota- 

tion A ff„.  Symbolically 

(1) 
A^^^ ={weMEt^ e((T,u),ES>0; a.t. X^,. *  < 0 < X,, + ^ , for 0 < A < <J} 

This definition essentially excludes any "non-regular" upcrossings such as tangen- 

cies or non-smooth intersections of zero. It is shown in [2] that A^,i/ is <l>^- 

measurable and that non-regular upcrossings are of zero probability. Hence defin- 

ition (1) is sufficiently general for our purposes. 
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We further define the number of upcrossings by X{T) in [a, i/), denoted 

N{(r, u), as the number of distinct points t„ at which upcrossings occur. More 

specifically we define: N{<T,I/) =  lim  ^ I{Af t +A)-  Here ]{A) is the indicator of 
A-»oo   , " ' 

A and {^,- } is an increasingly dense partition of {<T,U) with inter grid spacing A. 

By the assumed continuity of the random process X{t) it is reasonable to 

expect that it can be well approximated by a piecewise linear process tied to X{t) 

at a sufficiently dense set of points t = t^, ti,...,tj^. That is let ^„ {t) denote a 

random process defined on an interval \t^ , tj \ for which 

?, [t) = 

t^ =t, + kr'^itf -t, ), * = 0, 1, 2. . .,2" 

If iV,  is the number of upcrossings of zero by ^„ [t) then the following is due to 

Ylvisaker [1|.   ■. 

Lemma 1.1 

Let N„{t) be the number of upcrossings of zero by ^„ in the interval 

[tg, t). Then N^{t) is monotonicatly non-decreasing in n and converges 

to N{t), the number of upcrossings of zero by X in the same interval, 

with probability one as n —► oo. 

From the above lemma it follows by monotone convergence that 

P{N{t) < AT) = lim F(iV„ (0 < k) ,  for k = 0,1,2,... (3) 
»—►CO 

Hence as far as the computation of upcrossing probabilities is concerned ^„{t) and 

X{t) can be used interchangeably in the sense of (3). 
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The following will be important for the upcoming development and are 

essentially Theorems (2.1) and (2.2) of [10|. 

Lemma 1.2 

Let [t^, tf ] have the partition {i,},:lo- Then with N[t) the number of 

uperossings of zero by X in [t^ , t) and N„ (r, a) the number of upcrosa- 

ings by ^^ in [T, (T) 

E[N{t^)] = Um   E'P(A,»J = ^^ 'EP{N, (^,'.>I) > 0) (4)       : 

Define gt^Jiy,z) the joint density of X{t) and W+T) - X{t)]/T .   Then by elemen- 

tary transformations 

StAy,^) =-rft^t+riy^lh-Tz) :     (5) 

The following are essential to the development and are known as Leadbetter's condi- 

tions (2, Thm- 2] 

gtAy,z)    is continuous in t,y for each T,Z (6) 

M^'^) "" P «(y'^)    a«^—0   uniformly in t,y (7) 

St,Ay^^) < K^)    for all t,T,y,z (8) 
where 

CO 

Jzl{z)dz < oo 
0 

If the above three conditions hold then the following representation theorem holds for 

the probability of getting an upcrossing in [t, ,t), F[At^i), here denoted p{t). 

Theorem 1.1 

Suppose X(T) has continuous sample functions with probability one and 

let the conditions (6) through (8) hold. Then the expected value of the 

number of uperossings of zero by X{T) in any finite interval [<<,,f;) is 



-74- 

finite and given by 
." ■    ■ 

'■■.'-' 

00 

Kr) = j z p XQ,z)dz 
0 

(9) 

Furthermore the probability of getting at least one uperossing of zero by 

X{T) in [t^ ,t), p{t), satisfies the relation 

t ■;■- .;■ 

Pit) = Jh{T)il - p{T))dr + Q{t) (10) 
t. 

where 

;     V Q{t)= lim ^'tUti) (11) 

(12) 
qiti) = P{N, (/, ,/,-+i)>0, N, {ti )=0) - P{N, {ti ,t,^i)>0)P[N, {t. )=0) 

Here {ti},^Q is a partition of [t^ ,t] 

Eqn. (9) is obtained directly by modifying the proof of Theorem 2 of Leadbetter 

for down crossings [2] to the case of upcrossings. The proof of the rest of Theorem 1.1 

depends on a particular decomposition of the event that an uperossing of zero by ^ 

occurs on [t^ ,t), which we denote Bf^f ^ -^11(0 is Tmite we can define B ^y. the 

event that the first instance of an uperossing occurs in the subinterval [a,u) of [t^ ,t). 

That is , 

^     B^, = 5,,^nA.,,    ■ (13) 

where we read this as: ^, first upcrosses in [<T,U) if there is an uperossing in [a,u) but 

none in [t^ ,<T). 

We note the following two rather obvious properties of B^^. 

For [cr,u) and [s,t) disjoint 
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B^^  and  5,(   are disjoint (14) 

and 

: > Bt,\t=B,^^, ,te[t,,t)   ;: (15) 

Eqns. (14) and (15) follow directly from the definition (13).   The following propo- 

sition is central to the decomposition alluded to above. 

Proposition 1.1 

Let A„„ denote an uperossing of zero, and A^^ the first instance of an 

upcrossing, by a random process X{t) in [(T,I/), where X{t) has absolutely 

continuous distributions. Then if the expected number of upcrossings of 

zero in [t^ ,t), N{t^ ,t), is finite the following equivalence holds with pro- 

bability one 

where (f,-},-2lo is a partition of [f,,/] 

Proof ■    . 

Note that the number of upcrossings in [(, ,t) is finite with probability one since 

, . ■  . _ p{^t,,t)>k)< f: p[N{t,,t)^{) (17) 

< E inNih,t)=i) 

which must converge to zero as A; -♦ oo by the finiteness of the mean number of upcross- 

ings. Thus a "first instance of an upcrossing" is well defined. The inclusion " D" in (16) 

is trivial since any upcrossing in a subinterval of [t, ,t) implies an upcrossing occurred in 

the entire interval. As for " C" , if there is an upcrossing in [<„ ,t) it is either interior to 

one of the [f,- ,f^^.,) or at one of the endpoints f, , i = 0, 1, . . . ,2"-l However from the 

absolute continuity of the distribution of X{t), with respect to Lebesgue measure, this 

latter event has probability zero.  Therefore the proposition follows. 
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Proof of Theorem 1.1 

Partition   [t^ ,t) into 2"-l subintervala of length A = (^ - t, )2"" for n = 0,1,.... 

That is we have intervals  [^ ,<,+i) with /, =» ^ + lA   ,   f = 0,1,...,2" .   Define B,^,, 

<^>i^ ^ Ui}l=u t^s event that the polygonal approximation, („   upcrosses zero in [cr,i/), 

i.e. N„{(T,i/) > 0.  Then from Proposition 1 and Eqn. (15) for k = 2" {t^ = t) 

nBt,,0 = P{ u^B,^,,^, n 5.,,,) = 'E P(A.,.,,n5,.,,) (18) 

Here we have used the disjointness property (14).   Now add and subtract the product 

P(5,_ ,^Jf^ 5,  ,) from each term under the sum (18) 

\ nB,,j) = 'E[nB,,,jpiBi,,o + qiti)] (19) 

where 

■   ^^i)-Pi^t,.t^,nB,^j,)-P{Bt„tJP{B,,,t,)      . (20) 

as in the statement of the Theorem, Eqn. (12). 

Now 5| tij., i' equivalent to the event 

Bt,.t,^,= {^niii)<0<Ui^i)} (21) 

'i .'H-i 

Define 

., ,       e„('^i)-^„(^) 
Vn{ti)=' ^-  (22) 

Combining Eqns. (21) and (22) 

Bt, j^, = {^» ('.)< 0 < ^„ (^ ) + At;„ Hi)} (23) 

= {^,(^)€(-Az,0),  .J„(^) = z>0} 

Therefore by the definition of the joint density, g, ^, of ^„ (f,) and »/„ (f,-) 

00       0 

P^Bt^tJ^ ^dz^ g^^_^{x,z)dx (24) 
0      -Az 
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Now make a change of variable in the argument z of (24) and substitute the result back 

into Eqn. (19) to obtain 

..  2«_i    00    0 ■;."■'.■■■■■ 

-^(5.,,/)=   E[A/</^K,A(Az,z)P(I,^,,J<fe + q(<,)l (25) 
»=0       0      -r 

By the pointwise continuity and uniform convergence conditions, (6) and (7), for A suffi- 

ciently small 

0 

JgtJ^Ax,z)dz =» z p X0,2) ,      T 6 [U ,fi+i] (26) 

Condition (8) asserts that zi^z) is integrable over the positive real line -where l^z) upper 

bounds gi^^Vyz). Therefore the limit of (26) as A -♦ 0 is bounded except possibly on 

some set of measure zero. From Lemma 1.1 and Eqn. (3) P(Bt ,<) converges to 

P[\,,,) = 1 - v{U)-  Defining    "■■^'/f';: ' \lyi-'^::^:;M-:^^ 'L: '<y 

-■:'-'.':.■■'.'-.■"      ■-■.-■■■■   ■'.-■:■■::     '  -(y/ : .r'y   '■''-■-\^'--y ■■'■■'T.-:'■■::■:':■' '   '-■  ■ 

:       adti,2)=' l9t,A^^,z)P{Bt,,t,)dx ■ (27) 
-» . 

we have as A goes to zero 

«A(^,2)-*P«,(0,2X1-P(^))        O-C. (28) 
and -     .. 

"A{*i,^)< ^i^)   /■::'■;:■ (29) 

Hence by dominated convergence the first term of the expression (19) becomes in the 

limit 

J™   En5,„rJ/^5;^.0 ,•; (30) 

2"_1 0°     " 

lim AY.  Jdzfg,^jAx,z)P[\,^) 

»      00     0 

lim  fdrjdzfdx g,jAz,z)P{B, ,) 
"-^ I,       0      -z 

t        CO 

!drjz p ^0,z){l - p(T))dz < 00 
t.       0 
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Tliis is the first term In Eqn. (10). 

From the expression (20) 

-nBt„,jP{Bt,j,) < M < P{B,^,JP{B,^,^) (31) 

so that the q(/,) are absolutely summable by Lemma 1.2 and the finiteness of 

E(M^ >f/)]- Finally Theorem 1.1 follows by performing the limiting operation in (16) as 

n-♦ 00, taking account of the regularity conditions shown above. 

m. Asymptotic Results Concerning the Nature of Upcrossings 

Theorem 1.1 gives an implicit relation for the probability of getting an 

upcrossing in a bounded interval. Although the rate function A(r) may be known, 

in general the Q{t) term in Eqn. (11) involves quantities which are not known. 

EssentiaUy Q{t), or ?(/,•), i = 0, 1, . . . , 2" -1, (Eqns. (11) and (12)), are meas- 

ures of the dependency structure of the upcrossing process N over disjoint inter- 

vals. Hence it is conceivable that Eqn. (11) may lend itself to an iterative 

approximate solution if some sequence of increasingly good estimates of the Q(t) 

term is available. For the present, however. Theorem 1.1 can only be used as a 

verification method for some upcrossing probability candidate, p{t), obtained 

perhaps by guessing. No constructive procedure for obtaining p{t) \s offered here. 

Eqn. (11) can be used to prove certain asymptotic results for a fairly general 

class of upcrossing processes, which we will now undertake to show. To motivate 

these results the following argument is useful. Refering to Eqn. (11), assume that 

N^ converges to an independent increment point process iV as n —*■ co. Then 

7„ {tf) converges to zero for all i and by Eqn. (31), Lemma 1.2 and the finiteness 

of the mean number of upcrossings, q„ (f,-) is summable over t as the t^ become 

dense in [t^ ,t). Dominated convergence then allows us to assert that Q{t) = 0 

and   Eqn.   (11)   becomes   equivalent   to   a   linear,   first   order,   homogeneous 
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differential equation with coefficient h{t) and initial condition p{t^) = 0. This 

then has the solution 

t .       '     ', 

p{t) = l-exp{-fh{T)dT) (32) 
t, 

Eqn. (32) is of course valid for any semiclosed subinterval of [t„ ,t). Hence, by 

the independence of iV over disjoint intervals, the upcrossing process must actu- 

ally be an inhomogeneous Poisson process with rate parameter A(r). 

Unfortunately the above argument is fallacious since, roughly speaking, for 

non-zero N on bounded intervals the independent increment property of iV is 

incompatible with the sample function continuity of X[t) so that Theorem 1.1 

does not even apply. Clearly then the pointwise convergence of A^„ to an 

independent increment process iV is an overly strong imposition on X{t). How- 

ever in the following it will be shown that for a sequence of "thinned out" 

upcrossing count processes, N'"(t^,t) associated with X{t), a related (time nor- 

malized) random process can be defined which converges weakly to a Poisson ran- 

dom process defined on the interval (0,1) as m -+ oo. These results will depend 

on additional assumptions, such as mixing, on the distributions of Jt(f). 

The basic idea is to coordinate sequences of random processes {X^ } and 

intervals {4, } such that upcrossings of zero by X^ become "rare events" while 

maintaining a non-zero expected value of the total number of upcrossings over 

4» • For 4» sufficiently large any pair of upcrossings will become approximately 

independent since, with probability close to one, the events are separated in time 

by an amount exceeding the "inter-dependence time" (correlation time for Gaus- 

sian case ) of X^ which can be specified by the mixing condition. Then Theorem 

1.1 can be used to give the solution (32). 

For simplicity, and without weakening the results, we set t^  in Eq.   (32) to 
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zero.  Identify/^ with the scalar T^ 

L =[0,T„),    h =(0,1) •    (33) 

where T„ is strictly increasing to infinity as m -♦ oo. In general, when there is 

multiple indexing, subscripts indicate indexing with respect to the partition, {/,• }, 

of the time interval under consideration and superscripts index the quantity with 

respect to the infinite sequences {X„} and {/„ }. Thus N^{t) denotes the 

number of upcrossings of zero by the polygonal approximation to X^ , ^^, over 

the interval [0,f) E !„• Likewise iV"* is the number of upcrossings associated 

with X„ itself. Analogously to the development of Theorem 1.1 define ^J^,,, the 

cr-field generated by X^ on [a,i/); Bt'^t, . ^^^ event N^{ti,tj-) > 0, where /,• and 

tj are points contained in the 2"-th order partition of /^ ; and p„ {t), the proba- 

bility that X„ (f) upcrosses zero on [0,t) C [0, r„ ). 

The next section is concerned with the various conditions which will be 

imposed on X^ for asymptotic independence of the trajectories and Poisson-like 

behavior of the upcrossings. 

Asymptotic Conditions 

A mixing condition is a statement concerning the asymptotic independence 

of the trajectories of a random process on disjoint intervals [(T,I/) and [3,T) as 

\3 - i/\ —*■ 00. For example X[t) is "strong mixing" [3] if 

3up \P[A n B) - P[A)P{B)\ < 01 (34) 

where A and B are arbitrary events 

A G ^ B G ^       I 

and 

lim ^, = 0 
/-►CO 



The major weakness of "strong mixing" is that (34) becomes vacuous if 

either A or B are of vanishingly small probability. Indeed in the present context 

the event A will be contained in the event that an upcrossing of zero occurs in an 

exceedingly small interval which of course has exceedingly small probability. The 

needed condition here is the summability to zero of the differences below 

^^t\p{A'^nBr)-p[Anp{Br)\ = o (35) 

C -* 00 .  L = o{'^m)   asm ^00 

{^1 }i^o  f     an increasingly dense partition of [0,T„) 

A sufficient condition for (35), if the quantities P[B{^) are summable over i, b 

the following form of so called "uniform mixing" [3]. 

Mixing Condition 

With ^^„ the a-field generated by the trajectories of X„ in [a,!/), T„ a 

monotonie sequence increasing to infinity, X„ is said to be uniform- 

asymptotically mixing (u-a mixing) if 

\p{Br) - p{Br\Ar)\ <««,/, (36). 
where 

and 

with 

Are<i^.\,t,-i^ , Bre<i>Ci l+l 

lim a   i^ = 0 
m—00 

{^•},—0  >     **" increasingly dense partition of[0,T„) 

Note that for a dense partition {<,•} the conditioning in (36) will be on the zero proba- 
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bility event X{T) = 0 at some specific point r, viewed as a limit through a horizontal 

window [6|. Thus in the limit of dense partitions, although the conditional probability 

may not be well defined in the conventional sense, (36) is well defined. We state the 

following lemma which generalizes the uniform mixing condition to multiple events. 

Lemma 2.1 

Assume that X^{t) is uniform mixing in the sense of (86). Fix I > 0 

and for r > 1  let E^, E^, . . . , E,   he  disjoint intervals indexed in 

increasing      order,      that     is,      fup {T e Ei_i} < inf {T e E^ }     for :-V-.^-:'r^ 

t = 1, 2, . . . , r, and seperated by at least I. Then for A/" C ^£* 

\P{ n .1^) - n P[A,'")\ < a„,,^ tP{An :   :   (37) ■ 

Proof '^ ^^V':-■■>'■'::: 

For r = 2 Eqn. (37) follows directly from the definition Eqn. (36) and the identity 

P{A, B)^P{A\ B)P{B). We proceed by induction. 

inn AD-h p{Ar)\ 

< \p{ n Ar HAD - p(.n AnnAni + nArm n An - n p{An\ 
' ■=! t=l »=1 

<°m,,„nAn + c„j_^^p{An 
•=2 

by Eqn. (36) and the induction hypothesis. 

In order to make the upcrossings exceedingly rare events as m -♦ oo the fol- 

lowing "rarefaction" condition is used 

Rarefaction Condition 

With N^{(T,u) the upcrossings of zero by the polygonal approximation ^^ 

in [<T,i/) C [0, r„ ) N^ satisfies a rarefaction condition if for l„ -* oo, 
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lim     t ^W^/.-+i) > 0, iV-(«,-/„ ,f.) > 0) = 0 (38)     - 

{^•},-o  , n = ii{m) ,   an increasingly dense partition of [0,T„) 

The above condition is a strong condition on the trajectories similar to , but 

possibly more restrictive than, the condition DJ used in [7] for the stationary 

case. An additional condition needed is the following which is analogous to con- 

dition (4.6) in [7]    \;,^^^;H;/.;'-'':;..M;'': ■■;' '^;:>.fe\:.^,t-w^^^^^ 

:       P{Nnt,t+h) > 0)      ■ 
 :    —*■ 1   as m -* oo (39) 

{^•},--o  )" = "("»),   «"» increasingly dense partition of [0, T^ )      * 

for some h,, 0 < h < h^ and for all t G [O.r^ ). 

Condition (39) is stronger than a well known necessary condition for a pro- 

cess to be (asymptotically) Pobson: for infinitesimal intervals the probability of 

getting a point is proportional to the expected number of points in the interval 

(linear in the length of the interval for stationary processes). The condition can 

be interpreted as an extension of this necessary condition to certain finite inter- 

vals. 

We state here two additional conditions particular to the nonstationary 

situation, which guarantee that the behavior of the upcrossing process is suffi- 

ciently uniform over time to exclude degeneration of the upcrossing probabilities. 

Uniform Denseness Condition 

Let N^{T,3) be the number of upcrossings of zero by ^^, in the interval 

[T,S).    Assume   one   is   given   a  positive   integer K,   and  an   interval 

J = M C [0, T„ ), T,3 6 {ti },E:,, whose length \\J\\ is o{-^ ).   Then 
K 
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given any point t^  in the partition (f, }jHli, and an e > 0 the Uniform 

Denseness Condition is satisfied if there exist sufficiently large M,^P 

and   an   interval  / = [o",i/] C [0, T^ ),   <T,f € {^-},!li,   containing   t^ 

whose length \\I\\ is also o{—rr- ) such that 
K 

|E[iVn^] - E(7V„'»(i)]|< e , m>M,n>l^ (40) 

Asymptotic Uniform Negligibility 

Let N^ be the number of npcrossings of zero by ^^ in /„ = [0, T^) 

and let {r,- },-^o *« <» partition of I„   of size K.    Then with N^ the 

number of uperossings within the k-th partition element, [rjt ,rj|,+i], X„ 

satisfies uniform asymptotic negligibility if 

lim    -^ ■    =0 (41) 

Loosely speaking (40) implies that the uperossings are lean enough so that "simi- 

lar" intervals, of similar order with respect to /„ , have associated with them a "simi- 

lar" expected number of uperossings. This will be seen to imply a continuity property 

on P{N'"{T,(T) > 0) viewed as a map from the sets [r,^) to the positive reals. (41) 

guarantees that in no case will the total number of uperossings over /^ be dominated 

by uperossings in small subintervals of /„ . If the process X{t) were stationary these 

two conditions, (40) and (41), would be trivially satisfied since the expected values of 

N^{J) and N^{I) are identical if 7 = [T,S) and / = [(T,I/) are intervals of equal length. 

Main Theorem 

With the above conditions we are prepared to state the main result concern- 

ing the convergence of a certain normalized upcrossing process, associated with 

^m (0) to a Poisson process. 
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Theorem 2.1 

Let the a.s. continuous proeeaaes X^{t) have abaolutely eontinuoua dia- 

tributiona /or m = 1, , . .. Aaaume each X„ aatiafiea Leadbetter'a eon- 

ditiona (6) through (8), with, in addition, /"*(z)= 0{T^'^) in (8), u-a 

mixing of the form (36) and conditiona aurrounding Eqna. (38) through 

(41). Denote by A„ (r) , r 6 [0, r„ ), the rate function of iV" , the 

uperoaainga of zero by X^, and aaaume that T^h„{TT„) converges 

uniformly in r G (0,1) to a function A(T) aa m -♦oo. Then with the nor- 

malized counting proceaa N"* {T) = N'^(TT„) we have 

N'^{T)^N*{T)   in distribution v: (42) 

where N*{T) is a non-stationary Poisson random proceaa on [0,1). 

We will need the following lemma in order to use Theorem 1.1 for the proof of 

Theorem 1,2. 

Lemma 2.2 

Let X(T) be a random process which satisfies the assumptions of 

Theorem 1.1 and denote by N{T) the number of upcrossings of zero by X 

in [0,T). Let N ' (T) be the number of points generated by a Poisson pro- 

cess in [0,r) with rate function h{cr). Then the following inequality holds 

on the difference between        p{t) = PiM^t) > 0) and 

p'{t) = P[N'{t)>0). 

\p{t)-p'(01 <  lim s'|g(f,.)| exp{-fhiT)dT) (43) 

2' 
Where q{ti) is given by Eqn. (12) and {^,},„o »'« a" increasingly dense 

partition of the interval [Q,t). 
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Proof   ,■: v-'Vr 

Consider the following integral equation for 0 < f    < t 

,' 

p'it')^lKT)(l-p'{r))dT (44) 
0 

The right hand side of Eqn. (44) is the first term in Theorem 1.1, Eqn. (10), for t = t' 

and has the solution 

-:: ■'".'■■■, t' ' . 

' p*(/') = l-exp(-/A(r)rfr) (45) 
p.. . 

which corresponds to the case where N* is Poisson. Therefore subtracting Eqn. (44) 

from Eqn. (10) in Theorem 1.1 and using the triangle inequality on the resultant differ- 

ence we have - ' 

,' 

\fit')-p'{t')\<!h{T)\piT)-p'{r)\dr+\Q{t')\,   t'  e [0,1] (46) 
- * 

Recall from Eqn. (11) if {/,■ }^ is a partition of {0,t] with inter-grid spacing A        ^ 

■'    i-^    -■   ■■•■ 
g(0= Km   S   '3(»A) (47) 

where A goes to zero through the values 12'" , n = 0 , 1 . . . . From the triangle ine- 

quality 

m)\ < Hm   E  |q(,-A)| (48) 

Initially assume that t is contained in the set of points partitioning [0,t) for sufficiently 

large n. With this assumption the sum in Eqn. (48) upper bounds \Q{t )| for n suffi- 

ciently large since this latter quantity is upper bounded by the sum of a subset of the 

positive terms to the right of inequality (48). Therefore 

t' 

\ P(t' )- P'it' )\ < Jlir)\p{T)- p'{T)\dr+ r{t)  ,    ('   €[0,0 (49) 
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where " - ' 

rit)^ lim Y.Wi)\ (50) 

We can now apply the Bellman • Gronwall inequality for integral inequalities [4] to (49) 

to obtain 

■,' 

lp(<')-P*(*')l<KOexp(/A(r)</r) ,    f'   € [0,0 (51) 
0 

From Eqn. (32) it is clear that p'{t) is a continuous function. This is also true for p{t) 

since by the definition of an upcrossing, Eqn. (1), given « > 0 there must exist a 5 < 0 

such that 

- ;     0 < P[N(t^S) > 0) - I\N[t) > 0) = I\N{t,t+S) > 0, N(t) = 0) (52) 

<P{\At)\<() 

This last term can be made arbitrarily small by the absolute continuity of the distribu- 

tions of X.  Therefore Eqn. (51.) must hold at f'   = ^ 

If t is not one of the grid points {k2~' <}fclo for some n then for a given n let ff^ 

be the closest grid point to the left of (' . Then for the partitions {k2~''t, t' }^o 

Theorem 1.1 holds for p(f   ) with 

;   Q{t') = iim„^{ x;</(fi) 

+ [^^f, / ' ^0..') - nA,^ X )^^o/ )!} (53) 

with g(f,) as in Eqn. (12) and t,- = i2"" f.   Now the difference in brackets displayed in 

Eqn. (53) becomes arbitrarily small as n becomes large.   Hence the assumption  that t 

is a grid point entails no loss in generality and the lemma follows. 

We would like Theorem 1.1, and thus Lemma 2.2, to hold for the sequence 

X^ having the properties indicated in Theorem 2.1. The following lemma 

addresses this. 
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Lemma 2.3 

If the a.3. continuous proeesaea X^{t) satis/tea Leadbetter'a conditiona 

with, 

/(z) = /-{.) = 0(7V^) : (54) 
in (8), and 

'^mf^mi'rTm)-* HT)   ,     03 m^ CO (55) 

where convergence is uniform in r6 (0,1), then Theorem 1.1 holda for 

('o ,'/) = [0)^m )• Furthermore with iV" {t) the number of zero upcroaa- 

inga by X„ on [t^,t) 

1 

nN"'{T„)]^Jhit)dt <oo (56) 
0 

Proof 

From Lemma 1.2 and the application of the arguments leading to Eqn. (24) in the 

proof of Theorem 1.1 we have the relation 

E[Ar"(r„)]= lim   /G"(^A)rf« . (57) 

where we have defined 

A-O   0 

00     0 

G'"{t,A) = fdzlgt1{Ax,z)dz (58) 
0     -j 

with gtjti^, y) the joint density of X„ {t) and -^ —    .  A change of variable 

in the integral of Eqn. (57) yields 

1 

E[N»(r„)] = iim/r„G"(<r„,A)</f (59) 
A--0  0 

Substituting relation (54) into condition (8) we have that the integrand of Eqn (59) is 
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uniformly bounded. By Ekjn. (55) and dominated convergence, the right hand side of 

Eqn. (59) converges to the integral 

I 

E(iV"(r»)]-/A(Orf*<oo (60) 
. .0      ,        - 

Thus the assumptions of Proposition 1.1 are satisfled and Eqns. (16) through (27) are 

valid in the proof of Theorem 1.1. Finally the passage to the limit in Eqn. (30) is justi- 

fied since the integrand, with respect to r, is bounded above by G"" (r,A). 

Combining the above two lemmas gives the following 

Proposition 2.1 

Fix € > 0 and for every m > \ let X,^{t) he a random process which 

satisfies the conditions in Theorem 2.1. Let N^{<T,T) and N^{(T,T) be 

the number of uperossings of zero within [<T,T) by X^ and the approxima- 

tion to X„ , ^^, respectively. Further assume that the rate function of 

N"*, h„ (T), is such that T^ A„ (^^m ) converges uniformly to a function 

h{T). Then for p„(0 the probability that N"" {0,t) = N"" (0,tT„) 

exceeds zero and p *{t) the probability that a Poisson count process with 

rate function A(T) exceeds zero in the interval [0,t) £ [0,1] there exists an 

M > 0 such that 

(61) 

I P. (0 - P ' {i)\ <  lim 'E k " (ti )l cxp{-J r„ A, (rr„ )rfr) + 6 .     m>M 

where 

?-(*,) = p{Bc,i^,, Bo":,) - nBt'r,tjp{B^,t,)        m) 
As    usual   Bfj     is   the    event   that   Nil^{t{,t.-)    exceeds   zero   for 

2" 
t; ,t- G {^(}/=o ^hich is an increasingly dense partition of the interval 
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[0,0. 

Proof    ■ \  '   : 

Let p^{t) be the probability that a Poisson count process on [0, 1] with the same 

rate function as that of N'', T„ h„ (TT„ ), exceeds zero in [0,0 C [0,1]. Then we have 

by the triangle inequality 

IP«.(0-P*(OI<IP«(0-P:(OI + IP'(0-P:(OI (63) 

By Lemma 2.3 X"   satisfies Theorem 1.1 so that by Lemma 2.2 the first magnitude 

difference on the right of (63) is bounded 

|Pm(0-g«(OI< lim'sk"'('.)l«p(-/r„A„(rr„)rfr) , t e [0, 1] (64) 

By the finiteness of the integral of h^ for all m, (56) of Lemma 2.3, and the continuity 

of the exponential function the convergence of r„ A„ (rr„) to A(r) implies that the 

second magnitude difference on the right of the inequality, Eqn. (63), is less than t for 

sufficiently large m. 

Another fact that we will need takes the form of the following generalization 

of Lemma 2.2.3 in [7|. 

Lemma 2.4 

Let X„  satisfy (6) through (8), be u-a mixing and satisfy (38) and (39). 

Then   given   e > o,   integers   r > 0,   K > 0,   positive   quantities   I, 

T„ 
l=o{ T„ JK) and t, —rr-   < f < T„ , we have for m sufficiently large 

(65) 

P[N:r[t-lA > 0, N;r{t-l) = O) < ( 7^   ) 7^    + (2r - l)a^, + e 

To prove this we need the following 
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Lemma 2.5 

Lei conditions surrounding Eqns. (38) and (39) hold for the. upcroaaing 

process N^^'it), t G 4 and assume E[iV"*(r„)| is finite. Let J he a 

subinterval of I^ whose length I is o{T„ ). Define the collection of r dis- 

joint sets {Hf },lo each of length less than the parameter h^ in condition 

..■■'.' ■*- ■ -■■ ' 

(39) and covering J, J =^ U H^.   Then the following holds 

■ ■    lim  [ E E[Nr{Hi )I - P{N;r{J) > 0)1 = 0 (66) 

Proof  ■- ■ ■ ,■■'■■ 

By condition (39) given e > 0 there exists an integer Mj sufficiently large such that 

tot m > Ml 

tE[Nr{Hi)] - PiN^J) > 0) (67) 

<i,PiN„^Hi)>0){l+t)-P[N,^J)>Q) 

Using the same idea as in the proof of Theorem 1.1 linking upcrossing events with first 

instances of upcrossing events we can write the second term on the right of Eqn. (67) in 

a manner analogous to Eqn. (18) 

P{NnJ) > 0) = £ P[N:'{Hi) > 0, iV„"\ U //;•) = 0) (68) 
*=i >=i 

Therefore combining Eqn. (68) and Eqn (67) for m > M^ 

tE[N;r{Hi)]-nNn^J)>0) 

< S ^^»"(^.-) > 0, iV,'"( jjHj ) > 0) + £ 5] P(Nn//.-) > 0) (69) 

The first term on the right hand side of Eqn. (69) is bounded by the expression whose 

limit is zero in Eqn. (38) 
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:        < E    E n^(^.*i+i)>O,iVn«i,^-0>O) (70) 

<  E ^^n'l^.'^i) >o,N„l/,,«.•-0>o) 

Likewise by the "rarefaction" condition there exists an A/2 such that the last term in the 

inequality (70) is less than € for m > Mj.  Therefore for m > niax(A/i A/2) 

;•::■:       tn^n"'{Hi )| - nNnJ) > O) < e(l + S P{N„"{Hi) > O) )      - -      (71) 
■■■.-■ ;.■■..■.;.     »=i *=i 

Since € can be arbitrarily small, as we let m go to infinity the limiting result, Eqn. (66), 

follows from Eqn. (71). 

By the disjointness of the H^ in Lemma 2.5 we can assert that, for any 

interval J with length of asymptotic order T^ , if the assumptions of the lemma 

are satisfied then 

. nm \E[N^J)\ - P[N^J) > 0)\-* 0 ,    asm ^00 (72) 
m—►<» 

With the above we can now show Lemma 2.4. 

Proof of Lemma 2.4 

By the previous lemma and its implication (72), for t € ll,T„ ): given e > 0 for 

large enough m 

\p[Nr{t-i,t) > 0) - EiNnnm <e (73) 

Since   / = o( ),  for sufficiently  large   m  the  Uniform  Denseness  Condition 
K 

implies  that,  for some   r > 0,  there  are  r  intervals,   {Ej}^i C [0, ———   - /),  each 
A 

separated by / such that 
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\E{Nr{Ei)]-E[Nr{t-l,t)]\<t  ,     /=.l,2,....r (74) 

Furthermore r can be taken aa arbitrarily large as m —► oo.   Therefore combining (74), 

(73), and (72) with /=»£;,, we have for sufficiently large m 

■ ;■:    1^^) - g^i < 3e (75) 

where the triangle inequality has been invoked and we have defined 

v';;;:\:;-;;;:\:--■/■ ^  1^"^ - ^5^/)   ■ (76) 

and as before B" is the event that N^I) exceeds zero.   Here we will drop the index m 

for convenience.  The left hand side of inequality (65) can thus be bounded 

: V V':  /  /: :>   :      P{B,.,j,Bo,t.,) < P{Bt.(,, QBE,) (77) 

or ■ .  .  '; ■-.-■■■ 

nBt.t,t,Bo,t.n<nn^BEj-nBHt,nBE,)   ::        (^s) 

Now from Lemma 2.1 

; 1^ n^.)-n/^^.)l<M)a.,, (79) 
and 

I^^K,, QBE,) - P[Bt.t,,) UP{BE,)\ < ra„j (80) 

Hence the right hand side of the inequality (78) does not exceed 

{1-qY + 0(e) + (r-l)a, + (1-,)-^^ + 0(e) = ra„j (81) 

=- q{l-qy + (2r-l)a^, + 0(e) (82) 

where 0(e) goes to zero as e goes to zero.  The first term in (82) has a maximum value of 

(—— y ——r   which is verified by investigating derivatives in the unit interval.   We r+1       r+1 

lose no generality by replacing 0(e) by e in (82) which yields Lemma 2.4. 
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The major technical portion of the proof of Theorem 2.1 is contained in the 

following proposition. 

Proposition 2.3 

If the a.s. continuous processes X^ {t) satisfy the conditions stated in the 

premise of Theorem 2.1 then for any semiclosed interval I contained in 

[0,1]      r 

^^ ;     ;     - > 0)-. 1 - cxp(-/A(r)(/r) .     :,/       (83) 

Proof 

First fix I greater than zero and K a positive integer.  We reproduce Eqn. (62) here 

for clarity.   As in Eqn. (12) of Theorem 1.1, for the sequence X„ , m = 0, 1, . . .   we 

have the quantities j"* ((,•) on the 2" point grid {^- }j=o 

?"(^■) = /'(5,f:,^,,5o-:,,)- p{BCtjnB^,o m 

Partition the interval [0,T,, ) into K parts so that the sum on the right of Eqn. (61) of 

Proposition 2.1 can be represented as 

2" 
where J]^ denotes summation over the intersection of the grid {f, }^Q and the k-th par- 

tition element, k =* I, 2, . . . , K. 

Fix f > 0 and let m be sufficiently large so that Lemma 2.4 holds. Consider the 

final K-l terms in (85) 

Now for each 9*" (',) in (86) we add and subtract terms so as to isolate the mixing dom- 

inated quantities of the form (36).  That is we obtain via the triangle inequality 
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HU)\<\PiBt,.,^,.Bo,,,.t)-P[Bt„,JP[Bo,t,-,)\ (87) 

+ \P[Bt,.tjP[Bo,,,.,)- P[B,„tJP{Bo,t,)\ 

Where we have suppressed dependencies on m for notational simplicity. Using the mix- 

ing condition (36) on the first term to the right of the inequality (87) and using simple 

set identities for the other two terms we have 

\<Ati )l < nBt,.tJ [a^i + P{Bt,-i,t,, Bo,,,.,)\ + P{B,,,i^,, Bt^.^,^, Bo,*,-/) (88) 

Finally applying Lemma 2.4 to the second term in brackets [ ] in (88) and noting that by 

monotonicity the third term in (88) is bounded 

we get by substituting the inequality (88) in (85) ' 

^   'Ek'-eJI   ^     . ■  :    :      (90) 

:    < E,k"(^)l + [2ra, + (-^   )' -^   + e ] SV.:,J 

+ ''£ P{Nnti,ti^i)>0,N„'\ti-l,ti)>0) 

2" T" 

here f £ {f, }^o is the rightmost point contained in the first partition element, [0,- 
K   " 

of the K-th order partition.   Now applying the relation (31) and Lemma 1.2 to the first 

term to the right of the inequality (90) for n sufficiently large 

Li\l"'iti)\<EiPiBt:,0<E[N„^^] + e (91) 

Where N^ is as defined in Eq. (41).  Likewise 

't'nB^X,) < 't'nBt„tJ < EliV" (r„ )I + e (92) 

which gives via Eqn. (90) 



ge 

<   lim   E[iV-] + [2ra„,, + (-1-   )' -L-  +e KEfiV-Cr^ )]} (93) 
»-»oo r+1 r+l 

n —► CO   , . 

Therefore taking the limit as m,l -* oo , / = c{T„), the first term to the right of (93) 

goes to zero by Asymptotic Uniform Negligibility, (41),   and the finiteness of the limit 

lim  E[iV'"(r,,)j =» E[iV(l)l.   The second term converges to a quantity not exceeding 
m-—oo 

(—   + * ] E[iV(l)]. However as m becomes unbounded r can be made arbitrarily large 

and e can be made arbitrarily small, by Lemma 2.4, thus the second term is negligible. 

Finally the rarefaction condition, Eqn. (38), asserts that the third term vanishes. 

Hence by Proposition 2.1, for / = [0, t\ 

t 

Pm (r„ 0 ^ P ' (0 = 1 - exp(-/A(r)</r)  ,    t € [0,1) (94) 
0 

Proposition 2.3 asserts that the probability that the normalized upcrossing 

process N"* is greater than zero in any interval contained in [0,1) is the same as 

the corresponding probability for a Poisson counting process iV * in the limit as 

m —♦ oo. To show the stronger result that iV" actually converges in distribution 

to a Poisson process we will follow Leadbetter [7] in making use of a theorem in 

[5j. Using the nomenclature in [5] a point process N is a-regular if for every col- 

lection of intervals / contained in Tjo ji, the Borel sets on [0,1], there exists some 

array {/^ } C Tjo^i of finite covers of / (one for each m = 1,2,...) such that 

lim UmaupYjP{N'^ (/„* ) > a) = 0 (95) 
n—*oo    m—'OO    j^ 

We state the following special case of Theorem 4.7 in [5|. 

Lemma 2.6 
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Let iV"* be a sequence of point processes and N* a Poisson process 

both defined on (0,1). Then iV" converges in distribution to N* if and 

only if N"* is 2-regular and 

\im fXN"" (U) = 0) = P{N * {U) = 0) : (96) 
m—*oo 

for all U of the form 

f/ = U 'T;   ,    T, CT|o,i, 

for r > 1, and   /-:.:; 

V   limsupE{N"* (I)\ < EIN *{!)]< <x>    ' (97) 
m-»oo 

We now proceed to the proof of Theorem 2.1   which at this point only involves 

showing that iV"* of the theorem satisfies the conditions in Lemma 2.6. 

Proof of Theorem 2.1 

Without loss of generality we assume that the collection of intervals / in the 

a-regularity condition and in (97), and the T in (96) are sets of disjoint intervals. For 

each m, m = 1, - . . , define the increasing set of disjoint covers of /: {J^ }, 

k = I, 2, . . . r„ , with each J„| of length l„/T„ (recall l„ = o{T„)). Assume for 

definiteness that J„i are ordered such that the left endpoints are strictly increasing as k 

increases.  With N" as in Theorem 2.1 and AT (r) = N" {TT„ ) we have 

t PiN'' (^™t) > 1) = E HN" (^^ ) > 1) + PiN'" (J„,) > 1) (98) 

<  lim   S       S     Pi^nt'.tL) > 0, N„"\ti'-l„ ,t,') > 0) + E[iV" (y„J] 

Where {t,*}^i are increasingly dense partitions of J„i^, (or k = I, . . . r„ respectively. 

The first term on the right of the inequality (98) is bounded by the expression in the 

Rarefaction condition, Eqn. (38)  while the second term converges to zero by Asymptotic 
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Uniform Negligibility, (41),  and the flniteness of EfN" ] (Lemma 2.3).  Taking the limit 

of Eqn. (98) aa m —» oo ^we have that iV" is 2-regular in the sense of (95). 

Fix r > 0. Because of the absolute continuity of the distributions of N^ the inter- 

vals T, in (96) can be taken as having no common boundary points. Therefore by mix- 

ing, Lemma 2.1, for any collection of disjoint intervals Tj, T2, . . . , T,  contained in 

[0,1]        ^ \^■V■■^■■.■^^■:■i/^^^^^^ ■•■ i■■^^M'^;:■/'■■:■';^■^ 

l/^ niV"(r«T,)>0)-nP(iV'-(r„T.)>0)l-0,   a«m-oo (99) 
»=1 1=1 

where we have adopted the operator notation for  T„:  T„[<T,I/) = [T„(T,T„I/) for 

0 < (T < 1/ < 1.  Eqn. (99) and Proposition 2.3 thus imply that 

P{ nN"(r,,Ti) = 0)-exp(-X: Jh(r)dT) (100) 

We have from the additivity of the expectation operator over disjoint intervals   and 

Lemma 2.3 applied to general intervals contained in [0,r„,) 

E[iV'-(7)I^E(iV*(7)] <oo (101) 

Therefore the assumptions stated in Lemma 2.6 are valid for iV"   and Proposition 2.3 

establishes Theorem 2.1. 

rV. Discussion 

In this chapter two results were derived in the context of level crossing pro- 

babilities. First, a representation of the probability of getting one or more 

upcrossings in an interval by a general random process was presented. This 

representation in effect isolates the portion of the upcrossing probability due to 

the intensity function of the upcrossings, from a correction term, which charac- 

terizes the deviation of the upcrossing probability from an associated inhomo- 

geneous Poisson probability. The correction term depends on the degree to which 
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the upcrossings can be modeled as an independent increment process. By identi- 

fying conditions which asymptotically force the correction term to zero a second 

result was made possible: that a certain time normalized version of the upcrossing 

process can be made to converge in distribution to the inhomogeneous Poisson 

law. 

Of immediate interest to us b the use of an inhomogeneous Poisson model 

for the probability of a random process upcrossing a curve or level. Future inves- 

tigations of the specific form of the correction term, associated with the probabil- 

ity representation of Thm. 1.1, could lead to useful expressions for the approxi- 

mation error incurred by using such simple first moment approximations. For 

the asymptotic result, Thm. 2.1, the fairly complicated conditions, rarefaction, 

uniform denseness and asymptotic uniform negligibility, could use some simplifi- 

cation. In particular, rarefaction and uniform denseness could be replaced by con- 

ditions involving probability statements about the maximum process over the 

interval /, max J([T), analogous to [7|.  For specific probability models of the ran- 

dom process X{t) of interest, e.g. Gauss-Markov or Rayleigh as in [7], one would 

expect the replacement conditions to be more easily verified, than the conditions 

used here. 
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Chapter 5 

A Level-Crossing Approach to Large 

Deviations in Time Delay Estimates 

I. Introduction 

In this chapter the performance of the GCC is investigated for low 

observation-time-signal-bandwidth (BT) products. The performance of the GCC 

has been characterized by the estimator variance obtained by a linearization 

technique first introduced by P. Schultheiss [2]. The resulting variance expres- 

sion, in [2], is equivalent to the Cramer-Rao lower bound (CRLB), but it is only 

valid for "good" estimates, i.e. those close to the true time delay. For lowpass 

signal spectra, the estimate will be good in the high signal-to-noise ratio (SNR) 

case; however, in low SNR situations, the estimates can be far removed from this 

local region. In the latter case, the local variance can underestimate the actual 

variance of the estimate by orders of magnitude. For narrowband signal spectra, 

the GCC may never achieve the CRLB [19|. The disagreement between local and 

actual variance was shown analytically to be significant in the narrowband signal 

case by Chow and Schulthiess, using a form of the Barankin bound [4|. The 

deterioration in performance beyond that predicted by the local variance occurs 

in what Chow and Schulthiess call the "ambiguity dominated region" on the 

SNR versus bandwidth plane. This region is delineated by a SNR threshold 

beyond which spurious peaks give rise to exceedingly poor estimates of time 

delay. In [18], Weiss and Weinstein constructed a lower bound on the error vari- 

ance based on the Ziv-Zakai bound. The resultant bound is tighter than the 

Barankin bound of [4] and reveals the presence of two seperate SNR thresholds 

where the lower bound on the error begins successive rapid increases in magni- 

tude. 
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In this chapter, we develop approximations to the probability of large error 

and the global variance of a given GCC implementation. The approximations 

presented here are sensitive to large errors and can be applied to arbitrary signal 

and noise spectra. 

In a recent paper [3], lanniello investigated the effect of peak anomaly on 

the performance of the simple cross-correlator for broadband lowpass signals 

spectra. He obtained an approximate expression for the probability of anomaly 

using a method analogous to the approximation of the probability of error in 

Pulse Position Modulation communication systems. A'model for the global vari- 

ance was proposed, therein referred to as the Correlator Performance Estimate 

(CPE), which took the anomalous estimates of delay as lying uniformly 

throughout the a priori region of delay. The above approximations are quite 

accurate for the cases studied in the references [3],[14], where the cross-correlation 

function has no sidelobes over the majority of the a priori region of delay. How- 

ever, for the general case large positive sidelobes can introduce errors not 

accounted for in lanniello's approximation. 

For bandpass signals, lanniello made a distinction between anomaly and 

peak ambiguity in [19|. Essentially, ambiguity denotes the occurrence of spurious 

peaks near the high frequency sidelobes of the cross-correlation, within the cen- 

tral lobe of the envelope of the correlation function. Anomaly, on the other 

hand, is error which specifically occurs outside of this central lobe. To the best 

of our knowledge, no unified treatment of both kinds of large error has been 

undertaken. 

Here a different approach to error modeling is investigated, using certain 

level crossing statistics of the GCC. This approach will be sufficiently general to 

handle large error for small time-bandwidth products, and for high frequency 

bandpass signals, since it incorporates the time varying statistics of the GCC tra- 
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jectory into the error analysis. Since no distinction need be made between ano- 

maly and ambiguity in this approach, the all encompassing term "peak ambi- 

guity" will be used to denote large error. In what follows, the approximate 

equivalence of peak ambiguities with suitably defined level crossings by the GCC 

trajectory will be demonstrated. The probability of peak ambiguity can then be 

represented in terms of an infinite series involving the moments of the number of 

these level crossings over the a priori region. This expression is exact for arbi- 

trary signals as long as these moments are finite and smooth. In particular, the 

time varying statistics of the GCC output (i.e. sidelobes) are taken into account 

by the level crossing model. Here the emphasis is on predicting the large error 

performance using knowledge of the first moment only, that is the average 

number of peak ambiguities over the a priori interval. Based on the first 

moment, a general Poisson model for peak ambiguity is investigated, motivated 

by asymptotic considerations studied in the previous chapter. The Poisson model 

leads to an expression for the global variance which incorporates the variance 

approximation of [2] and the intensity function of the ambiguous peaks, the 

instantaneous average number of peak ambiguities. The resultant expression for 

the global variance, var[D], has the form 

var[D] = P, var^ + {1 - P, )varL 

where: P, is the probability of peak ambiguity, var^ is a truncated version of 

the local variance [2], and var^^^ is a measure of the mean-square distance of the 

locations of the ambiguous peaks from the true time delay (the second moment of 

the intensity function over time). Specific results for the intensity function of the 

ambiguities are then derived using a Gaussian approximation to the GCC output 

and an asymptotic analysis is performed for broadband signal spectra and large 

time-bandwidth products (length of a priori region times bandwidth [D^ T)). 

One result of the analysis is that at high   SNR the locations of ambiguities, 
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specifically the intensity function, become essentially independent of time, while 

at low SNR the time dependency behaves approximately as l/{BTf, where B is 

the signal bandwidth and r ranges over the a priori region. The limiting form, as 

BT—^CC, of the average number of ambiguities are valid for all ranges of SNR 

and are simple to evaluate, involving no integrations. 

For the case of signals with flat lowpass spectra, it can be shown that the 

Poisson approximation to the large error performance of the GCC is conservative; 

it over-estimates the actual probability of ambiguity. However, the threshold 

SNR, delimiting the onset of severe peak ambiguity, is underestimated on the 

order of less than 3dB for the cases of lowpass signal spectra considered here. 

Motivated by heuristics, a model for the approximation error between the Poisson 

and the actual ambiguity probability is discussed. Using results obtained in 

Chapter 4, an improved Poisson approximation is derived which adjusts the 

intensity function of ambiguities downward. The Poisson motivated approxima- 

tions to ambiguity probability and global variance are then compared to 

lanniello's probability of anomaly and the CPE for the broadband signal cases 

studied in [3],[14]. 

Finally, a numerical study of the behavior of the average number of ambi- 

guities and the Poisson probability and variance approximations is undertaken 

for narrowband bandpass signal spectra. For low BT, a positive indication of the 

location of the lower of the SNR thresholds, and the SNR value indicating the 

onset of the domination of a pnort-information over the observations, given by 

the Ziv-Zakai Lower Bound [18], is provided by the approximations. However, 

the approximations indicate that, for low BT, the upper SNR threshold, indicated 

in [18], is overly optimistic, i.e. the CRLB is unattainable using the GCC. There- 

fore, in this case the GCC is not an efficient (optimal) estimator. For high BT, 

the location of the higher SNR threshold, where the attainable variance begins to 



deviate from the CRLB, b positively identified by the Poisson approximations. 

This implies that the GCC is an optimal estimator for high BT. The above indi- 

cations are in agreement with conclusions drawn from a local (small error) 

analysis of estimator variance, undertaken by lanniello et. al. for bandpass signals 

n.  Problem Statement 

We briefly recall the setting of the two sensor passive time delay estimation 

problem defined in Chapters 2 and 3. Available are the outputs of two sensors, 

Xi(t) and X2(0. over an interval of time t G [0, T\. Xj(f) contains a signal, s{t), 

while X2{t) contains a delayed version s{t-D;,). Both signal components are 

observed in additive mutually uncorrelated broadband noises, ni{t) and n2{t). 

We assume that s{t), ni{t), and n2(t) are ergodic, zero mean, stationary Gaussian 

random processes possessing spectral densities G„(u),G^i{u) and G„2i^) respec- 

tively. In addition D^ G [-D^, D„ ], some a priori region of delay. The signal 

auto-correlation, R„ (r) = E[s{t)s{^-T)], is assumed to be essentially zero for 

M > Tf , the correlation time of the signal, which is also the independence time 

for the present case. This implies that the auto and cross-correlation functions of 

the observations, i?,y(r) = E[x,(f)xy (f-r)], are non-zero over at most a distance 

Tg from the time origin. 

The cross-correlation estimate of time delay, D, \s the location in time, 

within [-D^,D„], at which the absolute maximum of the (coherent or 

incoherent) sample cross-correlation function occurs. By ergodicity the sample 

cross-correlation, R nir), converges to the true cross-correlation, 

R i2{^) = R„ {T-D, ), in the limit of large observation time, T. For finite T, 

however, R I2{T) may not have its absolute maximum at D^. Recall, from 

Chapter 2 Eq. (5), the sample cross-correlation can be expressed as the sum of 
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signal type terms and noise type terms 

:       RM = R,AT--D,) + R,{T) (1) 

The first term in (1) is uniquely dependent on the signal and has an absolute 

maximum at D^ . The second term represents a zero-mean noise in what can be 

called the cross-spectral domain in contrast to the domain of the observations, 

Eq. (1) of Chapter 1. This term, i?„ (r), masks the global peak at D^ of 

jR„ {T-D^ ) and thus degrades the accuracy of the estimator. For non-white sig- 

nals one can do better by performing Generalized Cross-Correlation obtained by 

filtering the sample cross-correlation, with a filter with transform W{w), to 

resolve the peak at T ^= D^. For representatives of the GCC class see [1] or 

Chapter 2. In the following, only the simple cross-correlation estimate will be 

studied, that is W{w) = 1 in the GCC. Other GCC's can be handled by dealing 

with the W{tt;)-derived signal and noises, defined by the equivalent scenario where 

simple cross-correlation of the W( «;)-derived observations yields the identical 

GCC output as for the original observations (Substitute the filtered process 

s{t)* w'^{t) of Chapter 3, Eq. (3), for s{t) in the observation model of Chapter 2, 

Eq. (1) ). 

In general, the peak location algorithm involves quantization of i?" and a 

global search over [-D^ ,Z)„ ]. Thus a resolution parameter, e, related to the 

granularity of the quantization, can be associated with the peak detection opera- 

tion. This will introduce additional errors into the cross-correlation estimate due 

to quantization error. 

The local variance of the GCC is derived in [2] as a result of linearizing the 

first derivative of E[i?' (r)] in the neighborhood of D^. Consequently the 

analysis is exact as long as i?„ (r) does not deviate from an inverted parabola 

d^R.Ar) 
centered about zero with maximum R„ (0) and curvature: —   |,^o.   For 

dr 
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the signals considered in this chapter the above consideration implies that the 

region of linearity for the local variance analysis lies approximately between the 

pair of zeros of /?„ {D„) which are closest to D^ (See Fig. 2.2). For a spectrally 

broadband   signal   s{t),   with   single-sided   bandwidth   B  these   zeros   occur   at 

D, ——   and D, + -^    .  For a bandpass signal, at center frequency w,  the 
B B 

region   of  accuracy  of  the  local  variance  is   delimited   by   D. and 

Da (See Fig. 2.2a and Fig. 2.2b for an example of a bandpass signal and 

its envelope ). Therefore, if the probability that the error falls outside the linear 

region is high, the local variance will give an overly optimistic indication of the 

performance of the GCC. This probability will be the most critical in the 

bandpass case because of the high level sidelobes of /? " (Fig. 2.2a). In the sequel 

we will refer to the "linear region", mentioned above, as the "small error region", 

and the remainder of the a priori interval as the "large error region". 

lanniello considered an approximation to the probability of anomaly, for 

broadband lowpass signals, by looking at the probability that a number of test 

points on the correlation trajectory in the large error region exceed the value of 

the trajectory at the true delay D^ [3]. To make the computation of the above 

probability tractable, the maximum number of independent samples of the corre- 

lator output were chosen as test points and these were assumed to be Gaussian 

distributed. In our notation there are approximately M = 2Z)^ / T^ of these 

points (including the sample at D^) and the approximation takes the form 

00 y V M-\ 

P, =1- /0(x-a)U(^x)       dx (2) 
-00 

where a and ^ are constants involving SNR and the time - bandwidth product 

BT.  <f) is the standard univariate Gaussian density: 
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m=-i^   e'2        ■ (3) 

CO 

*(z)= / <p{s)d3   : (4) 
-00 

Equation (2) is only applicable when the sidelobe activity of the correlation func- 

tion is neglected and, in general, it must be numerically evaluated. The Correla- 

tor Performance Estimate (CPE) proposed by lanniello assumes that the peak 

ambiguities are uniformly distributed over the a priori interval. The resultant 

expression for the CPE involves the approximation (2) for Pj 

CPE^P,^    +iCi-P,)var,       x:, (5) 

where var^ is the linear approximation to the variance derived by Schultheiss [2]. 

In the next section the probability of large error will be approximated in 

terms of level crossing probabilities. Then in Section V a variance approximation 

is developed which can be applied to situations where the locations of ambiguities 

are distinctly not uniform over the a priori interval. These approximations will 

be more general than the approximations (2) and (5), since they will be able to 

deal with both broadband and narrowband signals which may display large 

sidelobes. 

in. A Level Crossing Interpretation For Large Error 

In this section a model for the occurence of large errors, or peak ambiguity, 

is developed. By definition a peak ambiguity occurs when the global peak detec- 

tion scheme indicates that the absolute maximum of the output of the GCC, 

R" (r), resides outside of the small error region [D^ -6, D^ +S\, e.g. 6 = —   or 
B 

S = —    for lowpass or bandpass signal spectra of single sided bandwidth, B/2, 
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and center frequency, w,, respectively. 

As an approximation we will characterize the peak ambiguity by the 

exceedance of iZ " (£> J by i? » (r) outside of the local region. This essentially con- 

siders R ^ {D,) as a representative of the entire correlation trajectory within the 

local region, an approximation implicit in lanniello's estimate discussed in the 

previous section. At worst, the effect of the approximation will be to over- 

estimate the probability of peak ambiguity. More precisely let e be the minimum 

magnitude resolution of the peak detection algorithm. Then a large error is 

characterized by the event ' 

; R^r)-R^{DJ>-€  ,    someTe^s (8) 

H5={t:t€[-D^,D,-<5]U[D,+<5,D^]} ^V 

For convenience define the ambiguity process AR' [T) = R^ {T}- R^ (D^). In 

what follows we will assume a.s. continuity of the ambiguity process in its time 

argument. This will permit probability statements concerning the set of time 

samples {R'{t{)}, for a dense set of points f,•, to carry over to the entire con- 

tinuous trajectory of R'. Define the occurence of peak ambiguities over some 

set of intervals 0 contained in Hj by AQ= {AR^T) > -€ , some T £ 9} and 

designate the left and right intervals for 5 > 0 

li =[-D„,D,-6]     . (7) 

Then the equation governing the probability of getting a peak ambiguity over 

^5 = ^ i Ul i?, i'e, can be written 

Pe = PiAuui,) = P{Ai^) + P{Ai^) - P{A,^ n^ij (8) 

Eq. (8) can be simplified considerably under the assumptions of very nar- 

rowband or very broadband signal spectra. The following comments are con- 

sidered in detail in the appendices (Appendices A, B and C).   For sufficiently 
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broadband signals, and S = -— , 6 is approximately the independence time, T,, 

of s{t). In this case the occurence of level crossings over I ^   is approximately 

independent of occurences in I jy, and Eq.   (8) can be expressed as 

Pe =P{Ai^) + P{Au)-PiA,JP{Ai^) .      ,        (9) 

For the signals and noises of interest the finite dimensional distributions of 

/^^ i.e. the distributions of {i?^^-)}.-! for N = 1, 2, . . ., depend only on the 

differences K,-PJ. In Appendix B it is shown that aa a result of this shift 

invariance, the probability of peak ambiguity is not dependent on the actual 

value of D„ if D„ is large with respect to T^. Without any loss in generality we 

will take D, = 0. Then ^ and ^ are of equal length and P{AiJ is equal to 

P{Ai^) , due to the symmetry of the statistics of R^T) about r = 0. In this 

case Eq. (9) becomes 

P,  =^P[A,J2-P{A,J]   ,      I, =[-D^,^   ] '       (10)" 

For narrowband signals it is shown in the appendices that, for spectra of 

interest, a positive correlation exists between R ' (r) and R " (-r) when r is in the 

neighborhood of an ambiguity prone sidelobe of i?„ . Therefore it is reasonable 

to make the approximation 

P{Au nAij = p(^ij (11) 

That is a peak ambiguity in I ^ implies, with high probability, that one occurs in 

I ^ . Hence for narrowband signals we will use 

^. =^^lj (12) 

where for the lowpass case,  I ^^  = [-D„ ,-—   ],  and for the bandpass  case, 

II = [-^m ' -"5    ]•   The representations (10) and (12) allows us to restrict 
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attention to the single interval 4 , which will be done in the sequel. 

If we assign a direction of pursuit to the trajectory Ai?^(r) over I = II 

then an equivalence can be drawn between peak ambiguities and level crossings 

of e by AR " . We will let Ai? " (r) trace out a path as its time argument increases 

from -D„ to -S.  Define the cumulative distribution of AR " (r) at r = ^ 

;      F{a;t) = P{AR" (0 < a) :H (13) 

Then the probability that an ambiguity occurs in I can be written 

;::   .;;  ^ ;      P{A[) = P{Ai \AR ' {-D„ ) < -e)F{ -e;-D^ ) (14) 

+ P{Ai\ARn-D„)>~e)il-F{-€;-D^) 

Where P{A\B) denotes the conditional probability of event A given event B. 

A simplification of Eq. (14) is immediate. The conditional probability 

P{Ai \AR " {-D^ ) > -€) is equal to one by definition. Rewrite Eq. (14) with the 

above fact 

P{Ai) = P{Ai \AR' {-D„ ) < -€)F[-€;-D^ ) + 1 - n-^;-D„ ) (15) 

Fix 5 > 0, and define the upcrossing count process associated with AR ' 

number of times AR ^  upcroases ,.„. 
-€ in an interval J e Hi ^'■°> 

Given AR "  started its trajectory below -€, N{1) must be greater than zero for 

an ambiguity to have occured in I.  Since the converse is also true we can write 

P{Ai) = P, {N{1) > 0) F (-6;-D^ ) + 1 - F (-£;-D^ ) (17) 

where F, (5) = F(5 I Ai?" (-Z?„ ) <-€). 

Using Eq. (17) in Eq. (10) or Eq. (12) gives an explicit relation between 

upcrossing probabilities and peak ambiguity probabilities. Thus the determina- 

tion of the probability of large error is reduced to solving for a level crossing pro- 

bability.   Unfortunately the distribution of level crossings is unknown explicitly 

N{J) = [ 
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except for certain classes of Markov and pseudo-Markov processes [11]. 

Motivated by the results on the asymptotic distributions of level crossing proba- 

bilities in Chapter 4, an approximation to P^ [N{I) > 0) will be applied, based on 

an inhomogeneous Poisson model. In addition to yielding approximations to the 

peak ambiguity probability, the Poisson characterization will allow a simple 

expression for the global variance of the time delay estimate to be derived, 

involving moments of the intensity function of the upcrossing count process N. 

The next section is concerned with the distribution of the event N > 0. 

Section V will contain the ensuing derivation of variance, and in Section VI 

specific expressions for the conditional rate function (first moment of N) are 

derived under suitable distributional assumptions on /? ^. 

IV. The distribution of iV 

In what follows we will consider the large error interval of interest, I, to be 

[t^ ,t\ for notational simplicity, e.g. {t^ , t\ = [-D„ , -S\. Drop the reference to the 

interval I in the notation for the number of upcrossings of -e by AR ' over the 

interval I, A^I). Now define the conditional expectation of the k-th factorial pro- 

duct of N given AR '  < -e 

/Jjfc = E, [iV(iV-l)...(iV-^+l)] (18) 

The 0ii 's are commonly termed the factorial moments (conditional here) of N. 

Assume 0^ is finite for all k and absolutely continuous with respect to intervals 

of time. Then it is stated in [16] that the (conditional) probability that N is 

greater than zero obeys the exact relation 

PciN > 0) = E i-i)'-'^ (19) 

where /Sj^   is the derivative of ^^ .    In particular /?/   is the conditional intensity 
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Xj of/\/^, or with iV(<) the notation for iV(<,,/) 

^e(r) = A   =       'I   '^     , r^[t,,t\ (20) 

Since X^ (r)A is the expected number of upcrossings over a small interval of 

length A, the conditional intensity has the interpretation of the average number 

of upcrossings per unit time. 

It is to be expected from Eq. (19) that X^ plays a major role in determining 

the probability of upcrossings. Indeed, it was shown in the previous chapter that 

under certain conditions (Leadbetter's conditions given in Chapter 4 , Eqs. (6) - 

(8) ) the (conditional) probability 

m = Pc{m>^) ^     (21) 

satisfies the integral equation 

t 

' P(0 = /X.(r)(l-p(r))rfr+g(<) (22) 

Q[t) in (22) is given by 

g(0= lim 'E9(^) (23) 
•»-<» ,=-0 

(24) 
q(^-) = P{N{ti ,f,+i)>0, N{ti )=0) - P[N{ti M^,)>0)P[N{ti )=0) 

2" 
Here {f,- },_o is an increasingly dense partition of the interval [t^,/).  In Chapter 

4 it was shown that the (conditional) intensity is given by the integral 

00 

>'« (^) = / 2 P A^,z)dz (25) 
0 

where p ^ is given in Appendix E as the limit of a function of the three- 

diniensional density of A/2'' (This limit is the (conditional) joint density of 

Ai? " (r) and rfAi? ^ /dr if the derivative exists). 
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In Chapter 4 we went on to show that if the possibly non-stationary process 

Ai? * is uniform mixing; the present becomes independent from the past rather 

quickly, and the upcrossings are made rare in a specific sense, then the distribu- 

tion of a normalized version of the number of upcrossings converges to the Pois- 

son law. That is, let iV * be a Poisson counting process with the identical (condi- 

tional) intensity as N (conditioned on AR^{t^) < -e). The probability of get- 

ting k points in the interval of interest by this Poisson process is 

" * 

P{N'{t) = k) 
^- i. 

t 

expHX,(r)dr} (26) 

■«.      ■ 

The integral J X^ (T)rfr= E^ [TV]  is commonly referred to as the (conditional) 
*•   ... 

rate function of the point process TV. 

The asymptotic result mentioned above asserts that p{t), Eq. (21), converges 

to p'{t), the probability of getting at least one point by N * in [t^ ,t\ 

r      - 
p'(r)=l-exp{-/X,((7)rf(7} ' (27) 

'        *• 

As a practical tool the above asymptotic result is unsatisfactory, in so far as 

the approximation of p(^) by p *(f) is concerned, since it gives no indication of the 

agreement between the Poisson and the actual probability for finite observation 

time.   However, Lemma 2.2 of Chapter 4 states that the difference between the 

Poisson and the actual upcrossing probabilities satisfies 

t 

|P(0-P'(0I< Q[t) exv{^h{T)dT) (28) 
0 

Now Q{t), Eq. (23), is a measure of the dependency of the present on the past of 

the random process.   Thus if the upcrossing process N[(T,U) has little dependence 
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on 

N{u,v) where [(7,i/] and [«,t;| are intervals separated by a finite distance, the error, 

upper bounded by Eq. (28), is arguably small. 

By using the definition 

oo 

E,[^]= Y: PAN = k) (29) 

we have the result that for any count process N 

//:\:y\-^:->■.-■,-_   PAN>O)<EAN\ (SO) 

so that the difference I p{/) - p *(f)| satisfies 

. :.     \pii)-p'{t)\<EAm\ (31) 

Hence at the very least the approximation of p{t) by p * {t) is indicative of the 

SNR region where the ambiguity error must be small. Indeed,.in Sections VII 

Vin, it will be seen that the conditional rate function, and hence p '[t), under- 

goes a rapid increase from zero as the input SNR , relative to the observations, 

Chapter 2 Eq. (1), decreases beyond a certain threshold. In Section Vm it is 

observed that this threshold agrees with the experimentally observed threshold, 

for a specific broadband signal spectrum, beyond which the variance of the time 

delay estimate deteriorates. 

However one must take into account an aspect of the Poisson model for the 

upcrossings which may cause overly pessimistic predictions of system perfor- 

mance. It b conjectured that the inaccuracy of the independent increment 

assumption neccessary to send Q{t) to zero, in (28), results in under-estimation of 

the conditional variance of N, even though N* has the identical conditional 

mean as iV. This can be shown straightforwardly for the unconditioned mean 

E[N\, for flat broadband lowpass signal spectra, by demonstrating that vaT\N] is 

lower bounded by E[^|. This is not essential for the following development and 
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the proof is omitted. Since the variance of the Poisson process with mean E[N\ 

achieves the lower bound, the Poisson model can be viewed as that model, 

matching N in mean, which minimizes the variance over all other such models. 

Keeping in mind that P{N = 0) is the quantity of interest here, the Poisson 

model entails a more rapid decrease in P{N = 0), as E[N\ increases, than would 

normally be the case.  Hence P{N > 0) is over-estimated by P[N * > 0). 

- In Section VIII the performance of a modification of the Poisson approxima- 

tion, acheived through a simple normalization of X^, will be investigated and 

shown to be in better agreement with experiment for broadband signals than the 

Poisson approximation presented above. For broadband signals of one sided 

bandwidth 5^ Hz , a downward correction of the intensity function is made by 

division of X,. by y/B^. This has a smoothing effect on the transition of p *(<), 

Eq. (27), as E^ [N\ increases from zero. The divisor was initially motivated by a 

numerical comparison of the Poisson approximation with lanniello's approxima- 

tion to the probability of anomaly, for large BT. However, the above modifica- 

tion can be regarded as assuming the following specific form for the correction 

term, q{T) in (23) and (24) 

9(r) = (J-   -l)X,(r)(l-p(r)) (32) 
B 0 

Recall, q{t) characterizes the deviation of p{t) = P^ {N{t^ ,t) > 0) from the Pois- 

son approximation p * {t). In general, at very low SNR and high BT, the condi- 

tional intensity becomes uniformly large over the large error region. This implies 

that the conditional rate function is much greater than one, which forces the true 

probability of upcrossing, p{t), to be close to unity. The Poisson approximation, 

p'[t) also has this behavior. Likewise at high SNR the conditional rate is close 

to zero, so that, by (31), p{t) and p '{t) have identical high SNR behavior. The 

assumed form for ci{t) reflects the low and high SNR agreement of the Poisson 
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approximation with the true probability (i.e. ^(f) ==5:^ 0 in these cases). The factor 

(1/5^ - 1) attenuates the increase in the probability of ambiguity as B^, and 

thus Ej [A'], increases. 

V.  Expressions for Estimator Variance 

In the previous Section a large error probability approximation was 

motivated, based only on the projection of the Poisson random variable, A^ *, 

onto the Bernoulli random variable, X, defined as the indicator function of the 

event N * > 0. That is X = I, with probability F, = P{N' > 0) and X = 0, 

with probability 1 - P,. 

For the variance approximation we will exploit the full structure of N *. 

Thus we specifically assume that N{t), the number of upcrossings of -€ by A/?" 

within [f 0, t], has a conditional distribution P^ (•), as in Eq. (12), identical to the 

distribution of iV'(f), Eq. (14). 

In what follows we will use the convention of denoting the total number of 

upcrossings over the large error region, H^, by N, whereas A/(/) and N{t), for / an 

interval, t a point, retain their usual definitions, (16) and N{t) ^ M~^m )0- Of 

course, ^V = N{Ii) + N{Iji) in this notation, where I^ and /^ decompose H5 

into left and right intervals, as in (7). 

Define for the N peak ambiguities, or points, occurring in the large error 

region, Hj 

a;,- = I location of the »'* point, j = 1, 2,   •• •  , iVJ (33) 

While there may be many ambiguities, there can only be a single w,- which 

corresponds to the global maximum ol R^ . Given an ambiguity has occurred, 

we model the global maximum of i?', £>, as being equally likely to fall on any 
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one of the w,- 's.  That is 

I\b £[t,t + A] I a;.. G [<, f + A], some i = 1, 2,   • • •  , -^ = -^      (34) 

Note the above model restricts the location of the ambiguous peak of /?" to 

lie within A of one of the upcrossing points {u;,-}.  This is a good approximation 

for large a priori interval-bandwidth product, D^ B, when excursions of Ai?" 

above -c are short lived (spurious peaks). 

Using the law of total probability, we can express the variance of the time 

delay estimate Z) as 

variD) = var{b\DiBs)P{D^Bs) ^   : (35) 

; >lim     E    iti-D,fP{Delti,t.+A])     :     : 
■   /,     .   ^-* " «, 6 H, 

Here {f,},-^^^ is an increasingly dense partition of Hj as A decreases to zero. 

The conditional variance, var{D\D ^ H^), in Eq. (35) is equal to the local variance 

of the delay estimate derived in [2), as long as var{D\D ^ H^) < 5^/3, and is 

equal to S^/S otherwise. For simplicity denote var^^ {D) the conditional local vari- 

ance t;ar(D | Z) ^ H5). 

Using the approximate independence of the distribution of ambiguities of D^ 

(Appendix C), Eq. (35) is equivalent to 

var{D) = vari [D] P{D ^ HS) (36) 

+   lim     E    ti^ P{D e [ti, t, +A]) 

Using (33) we have 

P(D € [<, f + A]) (37) 

= Y> P{De[t, t + A], w,- e[t,t + A] some 1 = 1,   • • •   , k) 

00     1 

= E T   ^"^i e [^ ^ + ^1 some i = I,  ■ ■ ■  , k) 

Define the composite intensity function p^ (r), on H.^ ^ Ij^ ^ ^R 1 where /^   and 
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Ifi are the left and right ambiguity regions defined in Eq. (7) 

Pc ir) = 
^  EAN[D^,T)iTeln 

(38) 

In (38), N(-D„ , T), T < D„ , is the notation for the number of upcrossings of -e 

by AiZ" in [r, D„ ] where Ai?" (a) is taken as tracing out its trajectory as s 

decreases toward zero. Thus E, [N{D„ , T)], T e IR , is the expected number of 

upcrossings of this time reversed AR ^ given Ai? " {D„ ) < -e. 

For the GCC trajectories of interest, the symmetry of the first and second 

order statistics of R^ about zero (see Appendix C) implies that 

EAH-I^m, r)] = EAN{D^, r)].  Thns 

Kir)  ,   T^IL f K(n , reII 

^^(^) = \   Ki-r)  ,  rein 

where X^ (r) is the conditional intensity defined in Eq. (20). 

In Appendix H, it is derived that (if p^ is continuous at f G H^ ) 

F(w,- e\t,t + A] some i = 1,   • ■ •   , fc) 
-|Jt-i 

Pc{t) • A exp{-/ Pc{s)ds} [k - 1)! 

Hence substituting (40) into (37) and recognizing the identities 

P(iV > 0) = 2 

/ Pe {s)ds 

ki 

E{N}= j pA8)ds 

we obtain 

var{D) = vari [D] P[N = 0)+ 
H,       E{N} 

ds\ F[N > 0) 

(39) 

(40) 

(41) 

(42) 

(43) 
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Recognizing P{N > 0) as P,, Eq. (9), and using (39), we have the equivalent 

expression for variance 

-:, -     ^. -.y     ■■■-■"; s -'      ' 

:   :      vaH,D) = varL{D)[l-P,]+   /   s^ \As)ds   •  P, (44) 

where we have defined the normalized intensity function 

X,(T) 
K{r)=   , ' ;;        (45) 

:■'-'■ ■-'■■-^■., \-'-^^ :":"'■ ■'■■■■■':' 

Eq. (44) shows that as the probability of large error increases, one must correct 

the local variance by adding a proportionate amount of a potentially large quan- 

tity. This quantity can be interpreted as the second moment of the probability 

density of ambiguities over time, X^, i.e. the mean-square deviation of the magni- 

tude of the large error. 

In Section VIII, the Poissoii variance approximation (44) will be implemented 

using a time independent approximation to X^, for large D^ B. In this case (44) 

becomes 

variD) = var^ (D) [1 - P, ]+ ^-^ i   P, (46) 

Now as the signal-to-noise ratio decreases to zero, one would expect the vari- 

ance to correspond to the case of uniformly distributed random variable on 

[-D„ , D^ \.  Indeed as this SNR condition occurs 

(47) P. -* 
^m   -d 

■    = 1 - 
s 

Dm Dr. 

and from (46) 

urn        x2/,     S     ^{Dl+fi    {D„ - 6) variD)  ->  ,$2/3 +         (^j 
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With 6 = 2r/5, it is readily verified that (48) becomes 

variD)  -.  Z>i/3 + 0(-^ ) ' (49) 
m 

which is the expected result for D„ B » 1.   ■ 

VI. Explicit Form of the Average Number of Peak Ambiguities 

Of interest here is the form of the conditional rate function E^ [A^, or the 

time varying intensity function, \, (r), of the number of upcrossings A^, associ- 

ated with the ambiguity process AR'. X, is a function of the bivariate distribu- 

tions of AR ' conditioned on AR " {-D„ ) < -€. The bivariate distribution of 

the GCC output, i2 i', is not exactly known except for particularly simple cases 

such as sinusoidal signals and simple cross-correlation operations [13]. Even in 

this simple situation the resultant expressions are cumbersome. Here we will 

assume that R " is adequately characterized by Gaussian statistics. This can be 

justified if one has a large observation interval and implements segment averag- 

ing techniques to estimate the cross-correlation function. The details are 

relegated to Appendix D. 

In Appendix E it is shown that if the a.s. continuous Gaussian process AR " 

satisfies some regularity conditions, involving continuity of certain first order 

derivatives of its covariance function and a non-degeneracy condition, then the 

conditions neccessary for the validity of (21) through (25) and (28) are satisfied 

for the conditioned process: AR " given AR " {-D„ ) < -c. Simple moment con- 

ditions on the observation spectra are given in Appendix F which guarantee the 

above mentioned continuity. In Appendix E the conditional intensity function of 

the upcrossings of -e by AR ' (r) given AR ^ {-D„ ) < -e, is derived as 

00 

\,{T)^K j y ^ay+9) 4>{y\-Q)dy  ,       r £ [-D„ ,-S\ (50) 
0 
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K, a, 0 and 0 are functions of r given by Eqs.   (E.4) through (E.IO) in Proposi- 

tion F.l. 

Unfortunately the integral in Eq. (50) is not tabulated so that the calculation 

of the rate function, E^. [N\, the integral of X^ over [-D^ -6], involves a two- 

dimensional integration over an infinite region. Although routines do exist to per- 

form such calculations for this type of integral [10] a simple approximation to X^ 

will be presented in the next Section involving only a single integration. For pur- 

poses of comparison, it will be instructive to consider Eq. (50) under similar 

broadband assumptions as in [3]. 

For large D^ B, and a lowpass signal spectrum, it is shown in Appendix G 

that K and 9 are approximately constant, and a and 0 are approximately zero, 

over the majority of [-D„ , -6] (A plot of a(r) is displayed in Fig. 6.1 for a typical 

lowpass spectrum). As a consequence, for large D^ B, we lose little accuracy in 

our computations by using a time independent approximation to the intensity, 

(50), in place of the exact expression. Such an approximation is derived in 

Appendix G for flat lowpass signal and noise spectra of magnitudes S/B and 

N/B respectively, where 5/2 is the cutoff frequency beyond which the spectra 

are zero. 

Recall that the resolution parameter, e, is related to the quantization of i? ^ , 

associated with the peak searching operation. If c is not zero then it is clear, 

from the development in Appendix G, that in addition to involving SNR the 

intensity, (50), is also a decreasing function of signal and noise power. The 

interpretation is that resolution (quantization error) depends on the absolute 

magnitude of the GCC output, while the true location of the global peak only 

depends on the relative magnitude (i.e. it is scale independent). In theory the 

effect of € on performance can be minimized by scaling up the GCC trajectory 

before   quantization.    In   practice,   however,   scaling   (amplification)   is   not   a 
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distortion free operation and could introduce additional error.   Nonetheless  we 

will concentrate on the case where c is zero in the following discussion. 

The conditional rate function of the upcrossings is the integral of the inten- 

sity, which, from (G.54), is of the form 

(51) 

* 

E, [N\ = X, (D„ -6) = 
B, (/>„ -S) \/3+2|7 121 

7Q^W7   ^(V V^i   **^ ^^^ 
(Note in practice S«D„  in (51)) Here B^ = B/4ir is the single sided signal 

bandwidth in Hz, |7i2| is the magnitude coherency \ 

5 
I7l2l = 

and we have deHned 

5-1- iV 

I7l2l 

(52) 

V2 + I7? 
(53) 

The consideration of (51) gives some insight into the large error performance 

of the GCC. Note that, as expected, decreasing the SNR, or equivalently 

decreasing l^io) and V towards zero, increases the intensity function, X, , and 

thus the probability of peak ambiguity, P^ . However the rate of increase in X^ , 

due to decreasing SNR, is determined by the time-bandwidth product B^ T and 

the a pnon-interval-bandwidth product B^ D„ . Specifically, for fixed D^ , B^ T 

determines the signal-to-noise ratio threshold beyond which increasing SNR leads 

to a rapid decrease in X,. In general, increasing B, T shifts this threshold to a 

lower SNR, expanding the range of error free operation of the GCC. On the 

other hand, B, £>„, affects the magnitude of the expected number of upcrossings, 

and its rate of increase, as the SNR decreases beyond the threshold.   Increasing 
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the length of the a priori region, [-£>„ , Z>„], naturally makes large errors more 

likely as is indicated by the corresponding increase in E^ [N\ of (51) The above 

comments corroborate analytical results obtained in [4] and the generally ack- 

nowledged practical performance of the GCC [3|. 

Consider the asymptote of E^ [A/] as l^jg] goes to zero. In the limiting case , 

fromEq. (51) 

BAD^ -6) 
,^        , ^   E,[iV]^-ll^^        .:  ,.     - (54) 

E^ [N\ is finite if Z>,„ - 5 is non-zero so that there is a finite probability that no 

large error will occur even at infmitessimally small SNR. This is merely an effect 

of the uniform distribution of the global peaks of R^ over the a priori interval 

when no signal component is present in the observations. Note, in general, the 

probability of ambiguity is upper bounded by (Z)„ - 6)/D^ , the probability of 

error for an estimator which ignores the observations, generating random values 

within [-P„,Z?„ I. 

Vn. The Unconditioned Approximation to E^ [/»/] 

Section VI dealt with the form of the conditioned rate, E^ {N\, of the 

upcrossings of -c by Ai?" over [-D„-S] given AR^-D^) < -c. Except for 

large D^ B^ , where an explicit expression for the conditional rate function can be 

derived, the integral of (51), that is E^ \N\, (50), is difficult to evaluate. Here we 

will consider the unconditioned version of the conditional rate, E[iV], which has a 

simpler functional form than (50), but remains a good approximation to E^ [iV]. 

Recall, from Section U, conditioning of the upcrossing probability over 

[-D^-S\, on the the non-exceedance of -€ by Ai?'^ (-Z>^ ), was necessary to 

assert an equivalence between level crossings and peak ambiguities. However the 

difference between the subset of realizations of i? ^  which give peak ambiguity. 
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that is simply exceed R' (0)-€, and those that actually upcross R" (0)-e is the 

subset where R ^ exceeds the above level in the neighborhood of -D„ and down- 

crosses the level at most once over [-D„ -6]. It can be argued that the probabil- 

ity of this latter event is small when D„ is sufficiently large. Essentially, at high 

SNR, any ambiguities which may occur are predisposed to occur near the 

sidelobes of the cross-correlation function (where the mean value of i?" 

approaches the mean value of R ' (0)). On the other hand, at low SNR, many 

peak ambiguities are likely to occur, so that an upcrossing must exist within 

[-D„ ,-S\ regardless of the value of R' {-D„ ). 

The unconditioned rate function, E(iV], is derived in Reference [17] for a 

non-stationary Gaussian random process. The result is 

-s 
E[iV|=   /   \{T)dT . (55) 

where X is the unconditioned intensity function of ^ 

X(r) = (1 - p,^y/^^    ^{^   )[^(f^) + f^*(^^)] (56) 

(T^, (T,. and p^ are: the variance of Ai? ' (r), the second derivative of the variance, 

and the first derivative of the variance evaluated at time r. /i, and t]^ are the 

mean of A/? ^ (r) and its derivative,  f^ is the ratio 

Again assume € = 0. An asymptotic analysis of identical form as that 

applied to X, and E, /A/| in Section VI to obtain Eq. (51), gives the following 

time independent approximation to the unconditioned rate 

E[^] = x(Z)„ - 6) = ^: ^f- " ^\ v^ 0(V .jwTr) (ss) 
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where l^jgl, 7 and B„ are defined as in Eq. (51). The unconditional approxima- 

tion and the true rate function, Eq. (58) and Eq. (51), differ only in the absence, 

in (51), of the ratio ^ax)/i>{x), with a = y/^+fi^ and x = 7' sJW/f. This 

ratio is essentially unity for large and small SNR ( 7 sflB/T ), which is con- 

sistent with the argument at the beginning of this section concerning the accu- 

racy of the approximation of E^ \N\ by EfA']. For comparison, plots of the rate 

function, E[A/], and the conditional rate function, E^ [A/], are displayed in Fig. 8.1 

for B, =200/fe 5, =100//z. and 5, = 50//2 for 

D^ = 0.125SCC., r = 8«cc3. The unconditional approximation is uniformly 

larger than the quantity it is attempting to estimate, i.e. (51). This indicates 

that, at least for large D^ B, at worst, the Poisson probability approximation, 

using (56) in place of (50), will over-estimate the nominal approximation, using 

(50), below the SNR threshold. 

In the next section the unconditional rate of (55) is used in place of the con- 

ditional rate of (50) to numerically evaluate the ambiguity probability and error 

variance approximations, obtained by applying the Poisson approximation to the 

conditional probability of upcrossings, discussed in Sections IV and V. For refer- 

ence we display the specific approximation to the probability of ambiguity, P^ of 

(10) and (12), for broadband and narrowband signal spectra respectively 

P, = P[Aj^){2 - P[A,^)) (59) 

and 

P, =P(A;J (60) 

P(A;^)   is   the   probability   that   an   ambiguity   occurs   over   the   interval 

4 = \-D^ ,S\.   This is a function of the conditional probability of upcrossings, 

Pj [Aj^), (see Eq.   (17)) which we replace by the Poisson approximation, p ' [t) of 

(27), with X replacing X, , (Note we use in (27):   [t, ,t\ = \-D^ -S\): 
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P{Af^) = (1 - exp{-E{^I})P(Ai^ ' {-D„ ) < 0) + 1 - P{AR ^-D^ ) < 0)(61) 

where      •:■.•:. '■■;:';•■'.,■ '7^';-v' ^■^■;;i'v''^■ ;';/:'.-';,;:■'■■■■.'■.■ :;''■ 

P(Ai?^(-Z)^)<0) = <I>[-^|:M  ] (62) 

Eqs. (59)-(61) will be referred to in the next section as the "Poisson probability 

approximations" and the variance obtained by substitution of P^ into Eq. (44), 

will be the "Poisson variance approximation". 

Vm. Numerical Study 

Here plots of the unconditioned intensity, Eq. (56), the rate function, Eq. 

(55), the Poisson probability approximations, Eqs. (59)-(61), and the Poisson 

variance approximation, Eq. (44), are investigated for broadband and narrowband 

spectra. First we consider the case of broadband lowpass signal spectra with 

large BT. For this case we use, as a benchmark for comparison, the specific sig- 

nal and observation parameters as were used in [14]. For the example in [14] we 

plot the intensity surface as a function of time and SNR to gain some insight into 

the distribution of large errors over the a priori region of delay. Next curves for 

the rate function of ambiguity and the resultant Poisson approximations are 

displayed, and the probability of large error is compared against lanniello's 

approximation, (2). Also displayed is the corrected Poisson approximation, dis- 

cussed in Section IV, designed to compensate for the Poisson models tendency to 

over-estimate the peak ambiguity probability. For comparison, the results of a 

simulation of estimator performance, undertaken in [14], is plotted alongside of 

the Poisson variance approximation. Finally narrowband signal spectra are con- 

sidered. The intensity surface of the ambiguities is generated and compared to 

that generated for lowpass signal spectra. Then, based on plots of the rate func- 

tion, the influences on performance of center frequency, bandwidth, observation 
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time and a priori interval are studied. The Poisson probability and variance 

approximations are investigated and the indicated SNR threshold values are com- 

pared to the predictions of [18], which were obtained by the Ziv-Zakai bound. 

Fig. 8.2 is a plot of the intensity surface as a function of input SNR and 

time for a flat lowpass signal spectrum of single sided bandwidth, B„ = lOOHz. 

The observation time was set to T=8aecs, The time window displayed in the fig- 

ures extends across the first few sidelobes of the auto-correlation function of the 

signal, starting at 5 = 1/25, (at the north-east corner of Fig. 8.2 for a SNR of 

OdB). In the figure, the global maximum of the signal auto-correlation function 

lies beyond the rightmost point on the t axis. Note the abrupt increase of the 

intensity near the SNR threshold indicated by SNRf on Fig. 8.2. At low SNR 

the intensity surface saturates (average height is about 4.2 ambiguities per unit 

time) with only a small ripple over time. For high SNR the intensity is essentially 

zero uniformly over the time window. These correspond to the cases when the 

uniform distribution of peak ambiguities over the a priori region is an accurate 

approximation. That is, when lanniello's approximation, (2), and the asymptotic 

forms of the intensity, (51) and (58), are strictly accurate. However in the "ambi- 

guity dominated" region of SNR ( approximately -8dB to -20dB), ambiguity 

occurs more frequently in the neighborhoods of the local maxima of the signal 

auto-correlation. 

In Fig. 8.3 the normalized difference between the rate function computed 

from X(r), (56), and the time independent approximation to X(r) , X of (58), 

-s 

X(Z>„   -6)-    J  \{T)dT 

difference = —  (63) 

J\{T)dr 

is displayed for lowpass signals with B„ = lOQHz, T — Ssees. and Z?_ = 0.125 
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and 0.02 seconds respectively. Note the above choices for D^ represent an a 

prton-interval-bandwidth product of 12.5 and 2 respectively. It is evident from 

Fig. 8.3 that only a small error is incurred for the larger of the D„ B^ products, 

the error increasing as Z)„ B^ becomes small (in which case the GCC trajectory is 

increasingly dominated by the signal auto-correlation sidelobe activity over the a 

priori region). The above observations provide evidence for the fact that under 

the uniform assumption the accuracy of probability statements, concerning the 

number of ambiguities over [~D„ ,-(5], is determined by the a prtori^interval- 

bandwidth product, Z)„ 5^ : 

Next we investigate the Poisson motivated approximations to the probability 

of peak ambiguity and estimator variance, discussed in Sections VI, Eq. (59) and 

(61), and V, Eq. (44), , for simple flat lowpass signal spectra as above. The 

approximation to P^ of (59) is plotted in Figs. 8.4, 8.5 and 8.6 against lanniello's 

formula, (2), as a function of input SNR for B^ = SOHz, B, = lOQHz, and 

B^ = 600Hz respectively, and T = Ssecs., D„ = O.USsees. Also plotted is the 

corrected version of the Poisson probability approximation discussed in Section 

rV. The Poisson probability approximation over-estimates the ambiguity proba- 

bility within the regions -QdB to -30dB, -SdB to -SOdB and -12dB to -20dB for 

B^ = 50Hz,B^ = lOOHz and B^ = 600Hz respectively. The error in the Pois- 

son approximation b most severe near the knee of lanniello's curve and increases 

as B^ decreases. This is in agreement with the comments on the behavior of the 

Poisson approximation at the end of Section IV. Note, however, that the Poisson 

model gives good approximations to the locations of the SNR thresholds, which 

are within 2dB of those indicated by lanniello's approximation. The corrected 

Poisson, implemented using E^ \I^/y/B^ in place of E, [N\, in Eqs. (27), (14) and 

(10), gives better agreement with lanniello's probability approximation as is indi- 

cated in Figs. 8.4 through 8.6. 
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In Fig. 8.7 the variance approximation of Section V is compared to the 

CRLB (local variance of [2]), and to the simulated variances calculated in [14], 

using the Poisson and corrected Poisson approximations, for 

B^ = lOOi/z, T = Ssecs., and Z)„ = 0.125aec3. The Poisson approximations 

agree with the CRLB above a SNR of about -6dB. However, as the SNR falls 

below this threshold, the Poisson approximations indicate a much higher variance 

than that indicated by the CRLB. This is the ambiguity dominated region, 

where the CRLB fails to govern the performance of the GCC. Note that the gen- 

eral behavior of the Poisson approximations agree well with the simulated perfor- 

mance. However, the nominal Poisson approximation gives variance predictions 

which are somewhat conservative over the threshold region, -^dB to -IhdB, while 

the corrected Poisson model for the variance is closer, on the average, to experi- 

ment. 

Figs. 8.8 through 8.18 relate to the bandpass signal spectra. General com- 

ments concerning the Poisson approximations are as follows. For the bandpass 

case, the auto-correlation of the signal haa a very narrow peak (lobe) at the ori- 

gin. Therefore, at high SNR the estimate of the location of this peak is highly 

accurate (for high BT), much more so than for the lowpass case, as is predicted 

by the CRLB. However while the local variance indicates a basically log linear 

decrease in performance as the SNR decreases, the Poisson approximation reveals 

the SNR thresholds discussed by Weiss and Weinstein in [18] which are ignored 

by the local variance. 

In Fig. 8.8 the intensity surface, as a function of time and SNR, is displayed 

for a bandpass signal at center frequency /^ = hQQHz, with one sided bandwidth 

B^ = 100/fz, and T = S.Osecs. Here the time interval extends from the first 

zero crossing of the auto-correlation function of the signal, 6 = 1/4/^ , to approxi- 

mately the fifth sidelobe away from the origin.   Fig. 8.8 is oriented identically to 
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Fig. 8.2 for the lowpass case , i.e. the global maximum of the autocorrelation is 

beyond the rightmost point on the t axis. Contrasting Fig. 8.8 with Fig. 8.2 it is 

evident that the variation in the intensity surface over time is much more severe 

in the bandpass case, even at low SNR. In fact the average number of ambigui- 

ties is orders of magnitude greater near the first sidelobe than over the rest of the 

time axis. A distinctive feature of Fig. 8.8 is the SNR difference between the 

point, SNR 1 where a rapid rise in the intensity of ambiguity first begins, i.e. in 

the region of the first sidelobe, and the point, SNR 2 where a uniform increase of 

the ambiguity, over time, is in evidence. This implies the existence of at least 

two separate SNR thresholds in the bandpass case. 

In [18] four distinct regions of performance were discovered based on a study 

of the Ziv-Zakai lower bound. These regions are delineated by two SNR thres- 

holds, SNR^ and SNR 2, and a SNR point, SNR^ , beyond which only a priori 

information is useful. The Ziv-Zakai bound can be loosely interpreted as govern- 

ing the performance of the optimal estimator of delay (The bound, however, is 

generally unattainable). In light of the present results, displayed in Fig. 8.8, a 

physical explanation of the thresholds can be proposed. It may be helpful to 

refer to Fig. 2.2a and Fig. 2.2b in interpreting the following comments. For SNR 

larger than SNR j, the only significant source of errors comes from small varia- 

tions in the maximum of the narrow peak, which occurs at the true delay. As the 

SNR approaches SNR 1, however, a rapid increase in the error occurs, due to the 

proximity of the maxima of the closely spaced high frequency sidelobes of the sig- 

nal auto-correlation. Due to the rapid attenuation of the high frequency com- 

ponent by the auto-correlation envelope. Fig. 2.3b, an initial saturation of the 

errors occurs within the central lobe of the envelope as the SNR approaches 

SNR 2- The occurrence of additional large errors, over the outlying remainder of 

the  a priori interval, is precluded until a sufficiently low second threshold is 
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attained, SNR2. Beyond SNR2, the outlying ambiguity becomes as significant as 

that falling within the central lobe of the envelope, and the error begins a second 

period of rapid increase. This increase continues until total saturation of the a 

priori interval is achieved at SNR^. Beyond SNR^, a limit on the number of 

ambiguities is imposed by the maximum number of times a waveform, of finite 

bandwidth B^, can undergo zero crossings within the a priori region. While 

5iVi?3 is not really a threshold in the sense of SNR2 and SNR j, in the following 

we will refer to all three as SNR thresholds, for ease in presentation. 

The remaining figures indicate the influence of the parameters B^, /<,, T 

and Djn on the three quantities: the rate function of peak ambiguity, and the 

Poisson probability and variance approximations. In Fig. 8.9 a table of values of 

the thresholds, SNR 3, SNR 2 and SNR j, predicted by the theoretical analysis of 

the Ziv-Zakai lower bound [18 Eqs. (62), (72) and (73)] is presented for com- 

parison with the thresholds indicated by the Poisson approximation in Figs. 8.12, 

8.15, and 8.18. 

In Fig. 8.10 through Fig. 8.12 the above three quantities are plotted as a 

function of SNR, for fixed parameters: /^ = 2000Hz, T = S.Osecs. and 

£)„, = 0.1253ec3. and varying bandwidth: B^ = lOOHz and 500Hz. In addition, 

in Fig. 8.12 the CRLB is plotted for comparison. We note the following features. 

An increase in B^ entails a decrease in the rate function of ambiguity and a 

decrease in the initial SNR threshold SNR j. At low SNR, the steady state mag- 

nitude of the rate function does not significantly vary over the two bandwidths. 

For B^ = 500Hz (BT=4000), as we increase the SNR the variance approxima- 

tion joins the CRLB at SNR ^ -&dB. However, for B^ = lOOHz (BT=1600), it 

appears to hit an asymptote of constant non-zero error. This effect was also 

reported in [19] by applying a small error approximation to the variance for 

bandpass signals.   Specifically, for low BT, it was found that even at infinite 
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SNR some ambiguity will occur at the secondary sidelobes of the signal auto- 

correlation function. Thus, for low BT, the GCC is not an optimal estimator for 

bandpass signals. This irreducible error was reported to be removable by imple- 

menting a simple "symmetry checker" at high SNR in [19]. 

In Figs. 8.13 through 8.15, we fix the parameters: /„ = 2OOOH2, 

B„ = lOOHz and D„ = 0.01, while T is varied from O.OSsec. to S.Osec. As in 

the previous case, the average number of ambiguities remains essentially 

unchanged at low SNR. The thresholds on the variance, and those on the proba- 

bility approximations, move to lower SNR as T is increased. This is physically 

justified since the acquisition of more data (observation time) should yield esti- 

mates with better statistical properties. As above, an irreducible error at high 

SNR is indicated for low BT (T=0.08sec.). However, it is much more severe here 

where 57 = 8. 

Finally, Figs. 8.16 through 8.18 show the results of changing the center fre- 

quency, /„ = 2000Hz and /, = SOOHz, while we fix the parameters: 

B^ = IOOH2, D^ = 0.125, r = S.Oacc. The rate parameter differs markedly in 

its steady state value at low SNR between the two cases. This is because the 

high frequency dynamics of the auto-correlation function are the limiting factor 

on the average number of ambiguities over a fixed interval. The general move- 

ment of the thresholds is toward larger SNRs as we decrease the center fre- 

quency, which is consistent with the Ziv-Zakai bound's behavior reported in [18]. 

Thus, while the local variance predicts more favorable performance at high fre- 

quencies, the Poisson variance approximation brings out the opposite fact, as the 

SNR falls below threshold. 

From Figs. 8.12 and 8.14 it is evident, from the curves with parameters : 

Dm = O.Uhsec, T = 8.05CC., B, = 200Hz, /, = 2000Hz (Fig. 8.12) and 

D^ = O.Olaec, T = S.Oaec, B, = 200Hz, f, = 2000Hz  (Fig.   8.14),   that   the 
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SNR thresholds remain unchanged. However, the point where a priori informa- 

tion dominates the error, SNR;^, naturally differs in the above two cases. Hence, 

as predicted in [18], SNR i and SNR2 are independent of the a priori interval of 

time delay. 

Comparison of the table of threshold values, in Fig. 8.9, with the observed 

thresholds, using the Poisson approximations, makes a few comments neccessary. 

In general, for low BT, the two lower thresholds, SNR 2 and SNR 3, of the Pois- 

son variance approximation occur very near the thresholds predicted by the Ziv- 

Zakai bound. The initial threshold, SNR 1, of the approximation occurs at much 

higher SNR than the theoretical prediction. Again, this latter behavior corro- 

borates the conclusions of (19), where the experimental performance of the 

bandpass GCC is unable to achieve the CRLB near threshold. For high BT the 

opposite situation is the case. The Poisson approximation agrees with the Ziv- 

Zakai theory up to the initial SNR threshold, SNR 1, but is overly pessimistic in 

as far as SNR 2 and SNR 3 are concerned. This may indicate that while the high 

BT GCC is optimal for bandpass spectra, the low BT GCC is not. On the other 

hand, this behavior may be due to the inaccuracy of the Poisson approximation 

below threshold, as was discussed in Section IV. These conjectures can only be 

answered by extensive simulation studies. 

DC. Discussion 

In the previous sections a general framework for peak ambiguity probability 

in time delay estimation was developed in terms of level crossing probabilities. 

The representation of level crossing probabilities, using only the intensity func- 

tion of the level crossings over the a priori interval and a correction term, led 

naturally to a Poisson approximation to the probability of large error and the 

global variance of the estimate. An analytic expression for the expected number 

of  ambiguities   (upcrossings  of  the  ambiguity  process)  was  derived  under  a 
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Gaussian model for the cross-correlation. This allowed a magnitude resolution 

parameter to be associated with the peak detection algorithm which is then 

applied to the cross-correlation trajectory. It was established that, under imper- 

fect magnitude resolution, the average number of ambiguities is a function of the 

signal and noise powers in addition to SNR. This is indicative of the difficulty in 

detecting small differences of magnitude in quantized versions of weak or low 

magnitude waveforms. The result suggests that (noiseless) amplification of the 

correlation trajectory can control this type of resolution error. 

For lowpass signals, a simple expression governing the average number of 

ambiguities over a large a priori region of delay was derived. The resulting 

expression behaves in a manner consistent with previous studies of the perfor- 

mance trade-offs that exist between SNR and time- bandwidth product. Not so 

explicitly identified elsewhere b the role of the a prtori-interval-bandwidth pro- 

duct in determining performance. Indeed while the time-bandwidth product 

determines the location of the SNR threshold, beyond which large errors predom- 

inate estimator error, the a prtori-intervai-bandwidth product controls the rapi- 

dity with which the performance degenerates beyond the threshold. 

The exact intensity function of the peak ambiguities was then investigated 

for both lowpass and bandpass signals. The analysis revealed that, while for high 

SNR the intensity is uniformly small, for intermediate SNR (i.e. within the ambi- 

guity dominated region) the distribution of the peak ambiguities over time is far 

from uniform, contrary to what was assumed in [3]. The most severe variation of 

the intensity over time occurs in the neighborhood of the local maxima on the 

sidelobes of the signal auto-correlation function. The effect is most prominent for 

the bandpass signal, but still significant for the lowpass signal over a wide range 

of SNR. The degree to which the inaccuracy of the uniform assumption affects 

the time independent approximation of the average number of ambiguities over 
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the a priori interval, for a lowpass signal, depends on the length of the a priori 

interval relative to the correlation time of the signal, i.e. a pnort-interval- 

bandwidth product. In general, a large a priori region is essential for the sidelobe 

activity of the cross-correlation to be neglected. 

The bandpass intensity surface revealed the presence of four SNR regions 

where the behavior of the ambiguity is distinctly different. Over the first region, 

which extends from SNR i to infinity, the intensity is uniformly small over the 

a priori interval. The other three regions can be called performance breakdown 

regions. In the first breakdown region, demarcated by two SNR thresholds, 

SNR 1 and SNR 2, the error is dominated by ambiguities which occur within the 

central lobe of the envelope of the bandpass signal auto-correlation function. 

This can be interpreted as a second small error region of SNR, that complements 

the small error region within the central high frequency lobe (The linear region 

for the local variance analysis of Schultheiss [2]). As the SNR decreases beyond 

the first breakdown region, one enters a region where errors become significant 

outside of the central lobe of the envelope. Finally, as the SNR decreases 

further, the saturation region is attained where errors occur uniformly over the 

entire a priori interval. The existence of multiple SNR thresholds supports the 

work of Weiss and Weinstein (18) on the behavior of the Ziv-Zakai lower bound 

on estimator variance. 

While a series expansion of the exact ambiguity (upcrossing) probability is 

known to exist, it requires knowledge of all of the higher moments of the number 

of ambiguities (upcrossings). Here first moment characterizations of the peak 

ambiguity probability, the Poisson and corrected Poisson models, in addition to 

the associated expressions for global variance, were investigated and compared to 

lanniello's probability of anomaly for broadband lowpass signals and large 

a priort-interval-bandwidth products. The Poisson approximation over-estimates 
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the probability of ambiguity for lowpass signal spectra below threshold. However 

it well characterizes the location of the SNR threshold. The corrected version 

gives more accurate results for these broadband lowpass signals, but its accuracy 

is unknown under narrowband signal conditions. 

For the low BT, bandpass case and high SNR, the Poisson variance approxi- 

mation indicates the suboptimal performance of the GCC, as was reported in 

[19]. Likewise for high BT, the approximation attests to the optimality of the 

GCC for high SNR. The general behavior of the approximation, as the various 

parameters ( observation time, center frequency, bandwidth and a priori interval) 

are varied, is consistent with the behavior of the Ziv-Zakai lower bound reported 

in [18]. In future studies the applicability of the Poisson approximations should 

be investigated for narrowband signals by means of comparisons between experi- 

ment and theory. 

The corrected Poisson approximation can be interpreted as resulting from a 

rough model for the remainder term, q{T), in the representation of the probability 

of ambiguity (upcrossing) (See Eqs. (22), (23) and (24)). A search for tractable 

tight bounds on this remainder may yield better first moment approximations to 

the probability of large errors than the Poisson examples considered here. Alter- 

nately, inclusion of higher order moments of the ambiguities, such as variance, 

may be a fruitful approach to improve upon these simple first moment methods. 
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Gaide to Appendices 

Chapter 5 

Appendices A,B and C elaborate on the statements made in Section HI of 

this chapter. In Appendix A the positive correlation between left and right ambi- 

guity intervals in the correlation domain for narrowband signals is clarified for a 

simple choice of signal spectrum. In Appendix B the independence of the large 

error probability on the actual value of the delay parameter is proven for large a 

priori interval of delay. Appendix C deals with the questions of the shift invari- 

ance of the first and second order statistics of the GCC output relative to the 

true delay, and the uncorrelatedness of the GCC trajectory between the left and 

right ambiguity intervals for lowpass signal spectra. 

Appendices D,E,F and G treat the approximation problems in Section VI. 

Appendix D contains a justification of the Gaussian assumption on the GCC 

statistics. Appendix E contains the derivation of the rate function of the boun- 

dary conditioned upcrossings. In Appendix F, sufficient conditions, in terms of 

spectral moments of the observation spectra, are given such that the derivative 

continuity, required in the derivation of Appendix E, is satisfied. In Appendix G, 

the final form of the uniform approximation for lowpass signals is derived. 

Appendix I contains a derivation of an identity which underlies the inhomo- 

geneous Poisson variance approximation of Section V. 

APPENDIX A 

Here it is shown that for X\, x^, observed over an interval [0, T] as in Eq. (1) 

of Chapter 2, Z)Q = 0 and flat bandlimited signal spectra there is a positive 

correlation between R' (r) and R' (-r) in the neighborhoods of the maxima of 

the sidelobes of /?„ (r). 
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From Chapter 3 Appendix C the covariance between R " (r) and R " (-7) is 

00   _ 

where it has been assumed that the observation time, T, is much greater than 

the decorrelation time, Tg, of the signal, no segment averaging has been used, 

and W{u) = 1 in the GCC. We will consider the lowpass and bandpass cases 

separately. ■'-■'/■■> 

For the lowpaas case, assume the signal and noise spectra are flat out to 

± 5/2, 5 < 00, with level S/B and N/B respectively. Then Eq. (A.1) becomes 

after some manipulation 

where 

8tne{x) = —2_J. (A.3) 

It is easily verified that the auto-correlation function R,, has the form 

^..(^) = -~   ««nc(5/2r) {A.4) 

First note that if the signal-to-noise ratio is sufficiently high, then from Eq. 

(A.2) all points r equidistant from zero are positively correlated. The condition 

for this is 

For arbitrary signal-to-noise ratio note that at the positive peaks of i?„ (r), 

T = '  "25 , n = 1, 2,   • • •    [see  Eq.   (A.4)],   we   have   from  Eq.   (A.2) 

<^r, -r = S'^I^TzB. Therefore, if 5 is small, a substantial positive correlation exists 

in the regions of the ambiguity prone sidelobes of /?„ (T). 
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Now let the signal and noises be flat bandpass centered about «;, with dou- 

ble sided bandwidth B < oo and level 5/(25), N/{2B) respectively. Then from 

Eq. (A.1) 

and 

<^r, -r = J^   [cos{2w, T) 8inc{Br){S + N)^ + S^ (A.6) 

R,Ar) = -i-   cos(w, T) 8ine{B/2T) (A.7) 

From Eqs. (A.7) and (A.6) the identical result holds:  for r = ^—^   or 

T = -—       ' m, n = 1, 2,   • • •     (Tr -T= S^/2irBT, which is greater than 

zero. 

APPENDIX B 

Proposition 

Let Tg be the dependence time of i?' and assume R^ (T) is stationary out- 

side of T=[DQ- T,,DQ+ T,]. Then if [-£>„ , D„] is the a priori region for 

D0, and D^ > 27^, the large error probability, P^ = P^ {DQ), is independent 

of DQ as DQ ranges over (-/)„, + 2 7'^ , Z)„ -27^) under the Poisson approxima- 

tion in Section FV. 

Proof 

Fix DQ, \DQ\ <D„ - T, and divide [-D„, Z?„] into iV = 
m 

intervals /,• 

such that the right endpoint of one of these, /j say, is at PQ, and 12, • • • J^-i 

are of length T^. Note by assumption 3 < / < NS. Hence except for intervals 

/j, Ii^i R' ]s stationary over [-D„ , !>„,]. With P[Aj-) the probability that a 

large error occurs in interval I^ write 

PADo) = P{}JAi) = l-P[U Ai) (B.l) 
i—i 1—1 
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Now use the product law for probabilities to express (B.l) as 

N k I 
PAD^)-=i-nP{Ak\n Ai) .p{A,) 

From the independence of Aj^, A-   \k - j\ > 1 

(B.2) 

*-2      fiA^i) 
(B.3) 

^1 PiAkHA^^) 

PiAN-i)    *-3      P{Ak.i) 
FlAjDAi)  .PiA^ r\Aj^_i) 

For the GCC implementations of interest, the statistics of i? " (r) undergo only 

time translation as DQ varies (see Appendix D). Hence, if 

IDol < |I>„ - 2rj , [•! in Eq. (B.3) is independent of DQ 

^1 P{Ak n A^i) 

P{AN-I)   *-3       P[A,_i) 
(B.4) 

1 N-l 
—=—        n 
P{AN-I) *-3 

^    ^^^   k^ 1,1+1,1+ 2 

'^ P{A, n A,_,) 

The first product to the right of Eq. (B.4) is a constant independent of / by the 

stationarity of R" over the relevant regions. The same holds for the second pro- 

duct by the shift invariance of the statistics of i? " mentioned above. Hence, for 

any two Do G {-D„ + 2T, , D„ - 2T,), D'  and Z)"  say, by Eq. (B.3) 

(B.5) 

\PAD') - PAD" )\ 

= K\P{A,   U^2) /^A7UAJ7) - P{Ai   UAi' ) P{Ai'   U Vi )| 

where A^-  , Aj     ; ; = 1, TV, denote events over the two extreme intervals in the 

partition construction for D'   and £>' '  respectively, and K is given by Eq. (B.4). 
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Note if Ij and /y are the intervals over which A:' and A-'' are respec- 

tively defined then 

(B.6) 

ii/i u/. II + \\iLxu/;II = ii/;' u/j'II +11/^1 u/;'II = L 

where L a common length. 

For / an interval of length ||/||, disjoint from \D^ - T,, D, + T, ], the sta- 

tionarity of i?" over / implies the Poisson large error approximation of (26) is 

only dependent on the length of /. Furthermore, substitution of the Poisson 

approximation to P^, P* of Eq. (27), into Eq. (17) gives 

nm > 0) = [l - exp{-\,  Ij/ll)] F{-€) + (1 - F\-e)) (B.7) 
■or ■   .- 

/ P(iV(/) = 0) = exp(-X, ||/||)/\-€) (B.8) 

Here we have used the notation F{-€) = F{-€, d" I}, the probability that R^d") 

is less than -€, and X^ = X^ (r), the conditional intensity; respectively indepen- 

dent of the endpoint d" I and r by stationarity. Use of Eq. (B.8) in Eq. (B.5) for 

P{AI UAi) = P[N{Ii U/2 ) > 0), and analogously for the other three 

quantities, gives the desired result 

\PAD') - PAJ)" )\ = 0 (B.9) 

when relation (B.6) is taken into account. 

APPENDIX C 

Here two statements will be clarified. First, R^{T) is approximately 

independent between the left and right large error intervals r S 4 and r E Ijj, 

given in Eq. (3.7), for lowpass broadband signals when 6 in Eq. (3.7) is set to 

2ir/B, B the two-sided bandwidth of the signal. Second, we show the shift 

invariance of the first and second order statistics of R^ relative to the true delay 
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D (,.   Throughout we assume i?"  to be well characterized by a Gaussian model 

(see Appendix E). 

i? "(»;) has mean 

oo'    ■ 

E{R^fj)} = -±.    j  G^2{uj)W{uj)ei-^duj (C.l) 

and from Chapter 3 Appendix C iZ " (»/), i2 " (t; + T) have covariance 

'^''' '^ "^ ^^ ^ 2^   -^ [G'nMGaaM + GilMc^^^^I Wtwlc^'"^'     (C.2) 
-00 

where k is proportional to T; the sensor observation time.  Using the fact 

(C.l) and (C.2) become 

E{Rnti)} = -^   j G,,{u:)W[u)e'^^'^-^'^Uu g        (C.4) 
—00 

00     ■• 

<^{ri, '' + '')= 2^   /   [c^iiMG'ssM + G„(a;)e'^(''-^''H e^-^du  (C.5) 
—00 

Clearly (C.4) and (C.5) depend on rj and D^ only through the difference »/ + Z?^. 

Since the two first moments of a Gaussian process completely characterize its 

statistics the shift invariance of the statistics of i? " to D^ is established. 

Let I>o = 0 and assume s{t), ny{t) and n^it) are lowpass with flat spectra of 

level S/B and N/B out to frequency ±5/2. Then computation of the integral in 

Eq. (C.l) for VA,u) = 1 in the passband of a(0, W[(jj) = 0 in the stopband, gives 

'^''' '' "^ ^^ = 2^ ^^^ "^ ^^ Binc(B/2T) + 52 sinc{^   {2t, + r))]   (C.6) 

The length of time which separates 4   and Ij^  is 4r/5 when 6 in Eq. (3.7) is 

2ir 

B 

and 5 large to see that R ^ must be uncorrelated, and hence independent, from 

chosen to be 2jr/J5.  Hence, it suffices to note that 8inc{B/2T) !=ii 0 !or \T\ > — 
B 
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4 to 7^. 

APPENDIX D 

Here we show that for sufficient observation time T the GCC trajectory- 

may be described to a good approximation by Gaussian statistics, if it has a finite 

third absolute moment (Eq. E.ll). 

Assume that the observation X({t), i ^ 1, 2 becomes independent over inter- 

vals separated by   Tg   or more.   We divide the records of length   T into m 

subrecords each of length T„ where T„  » T^  and T„  » Z)„ .   Then form 

the raw cross-correlation estimates RkiT), k=l,   - • •   , m, based only on the ^** 

subrecord. 

-       i?fc(r)= / x*((r)x*{<T + r)rfr       r6[-7;„,7;,l (D.l) 

where  .. ■-■^/"■■■■:■■■-',■■''I 

rM = { 
Xiit) {k-l)T^ <t<kT^ 

0 otherwise (^2) 

The cross-correlation estimate b then obtained by averaging over the raw esti- 

mates. 

^M = ^tRk{r)       re[-T„,T„] (D.3) 

For r„ sufficiently large R i2(r) is represented as the sum of m independent 

identically distributed random quantities with the following first and second 

order statistics (Chapter 3 Appendix C) 

E[Rt{T)] = R„{T-D) (D.4) 

(D.5) 
00 

cov[R,{n), R^ifj + r)] = -^    j  [G,MG^{o^) + Ci|(a;)c^""2'?]  . gZ-rfa; 
-co 
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The GCC trajectory over [-T„, T„] b formed by filtering i? 12 with the 

time domain equivalent filter, w{t), of the GCC weight W{<jj).   Let t^,   • ■ ■   , t 

be r distinct times in [-T„, T„].   Then write,   R '  the vector of r samples of 

^      ^^ =-^    E ^/        *- ■    (D.6) 

where .  .   '   .. ■-"■^''"■.'■ ;'       ■■:■■■■■':■"■:■ 

^^=[R''M *<^{T)U^t,,   ■■■  ,R'M*^r)l.ty (D.7) 

has mean 

/|' =[R,Ar-D)*u{T)\,^,^,  ■■■  ,R„{T-D)*u(T)\,_,y      (D.8) 

and covariance :-: 

"■''-'-''-  I  °° "'■''■-"'''■■ ■■■'-■■■■.■■ '-■■''- ■ 

(D.9) 

25^    -00 

where tr^ ,, ^ ^ is finite on R^. Now by a multi-dimensional version of the Berry- 

Esseen Theorem [8], if F^^ is the probability law of Vm J]"'''^!^ ' - /^ " 1 and G 

is the standard Gaussian law; there exists a constant C{r) such that 

8up\P„ - G\ < C{r) p^-L. (D.IO) 
V tn 

where 

Pz = E{\j:-'^^{Ri'-li)\'} (D.ll) 

and the sup is over the class of measurable convex subsets of r-dimensional space. 

Therefore, if /?3 < 00, the finite dimensional distributions of R^{T) are approxi- 

mately multivariate Gaussian with covariance —   V] and mean u ' , for m suffi- 
m   '^ _ 

ciently large. 
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V:;":-."' ■>■'."--.f   APPENDDCE   ^:-:-:; ■.•;■:' \- 

Let 1(7) be a Gaussian a.s. continuous process. Denote by N{tQ, t) the 

number of upcrossings of a level -c by X{T) over an interval [t^, t]. Here condi- 

tions will be given such that the conditional rate function of N, E^ [N{tQ, t)], 

exists and expressions for the rate function and the intensity, X^ (T), will be 

displayed. The conditions to be given will also be sufficient for the validity of 

Eqs. (22) and (28) with X = X,. 

The central result is the following proposition. 

Proposition E.l 

Let X{T) be an a.s. continuous Gaussian process with mean ti{T) and covari- 

ance <T{T, V).  Let r,y(r, v) = d'"^^ /di* dv' (T{T, V) and assume the derivatives 

are continuous in r. Then if the matrix 

'•oi(''. T) 

*'oo('o. ^)       ''oi('o> ^)       ''ooC'o. ^0) 

(E.1) 

is positive definite the following holds: 

The expected number of upcrossings of -c by 2(7) on [f 0, ^j given 2(f Q) < -f is 

to 

(E.2) 

where 

00 

X, (r) =^K{r)S y *(fly + S) exp{4 {^zV + ^f)dy 
0 ^ 

(E.3) 

and 

(E.4) 
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K{T) = 
1 1 

WTJAp      t-(-ti{to) exp -iH-M.r(.,-iL) 
» '0 

a = 
N/7 

rf3      J 

;;;■   (E.5) 

(E.6) 

(E.7) 

where in (E.4) - (E.7) the elements of A"* are implicitly defined 

A-» = 
A b 

e (E.8) 

d2 

d2 

b. 

= A - i 66 ^ 
c 

= 6 

(E.9) 

(E.10) 

Although the proof of the above proposition is straightforward, the details 

are tedious and will not be given here. The essential element is to show that the 

conditional joint density function, j^,., A(y, z\ of 3{T) and   ''^^'^ ") ~ ^^)    gj^g^ 

2^^o) < ~^ satisfies the Leadbetter conditions given in Chapter 4, Section  1. 

Then Leadbetter's results in [12] imply that (E.2) holds for an intensity, X^ (r) 

00 

equal to the infinite integral / zp,^-c,2)</z, where the conditional joint density 
0 

Pr(-«>2) = pm?r, AH, 2).    The specific  form  of the intensity  X^ (r)  is  then 

obtained by manipulation of 

a        *—►O 
(E.11) 

into the calculable form of (E.4). 
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APPENDIX F 

Here moment conditions on the spectra of the signals and noises 8{t) and 

"i(^)> "2(0 will be given to ensure the continuity conditions on the covariance 

function of i?", stated in Proposition E.l.   In the following, assume i?" (r) has 

mean H{T) covariance (T{T, V) and let r,y {T,V) be defined as in Proposition E.l. 

Lemma F.l * 

Assume R'{T) obeys a Gaussian probability law. Let the following four 

moment conditions hold. Then the derivatives /i(r), r IQ{T, (T), rQi{T, cr), r ^{T, T) 

are continous in their arguments. 

00 

—00 

00 

2T 

(F.l) 

(F.2) 
-00 

00 

-i-   / iJ^G^^{oj)G.^{u)du  <   00 (F.3) 
2ff 

-00 

oo 

•h   I |w|'Gji(w)(722(w)rfw  <   00 (F.4) 
2T 

Proof 

The existence of the derivatives of ft, TIQ, TQI and r^ is sufficient for con- 

tinuity.    From the unbiasedness of the cross- correlation estimate 

00 

A'(r) = -^    /  G„(a;)M^c^)e^'^<^-^-'J(fc^ (F.5) 

and its second derivative 

00 

f^" ir) = ^    ! -oJ^G„{uj)W{oj)e''''^'-''°Uu (F.6) 
'^''"   -00 

Now since  W{cj) is a finite energy filter, we can take  W{u) = 1, in (F.6) and 

obtain the bound 
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oo 

|/i(r)|<^    / J'G„{uj)duj (F.7) 
-00 

From Chapter 3 Appendix C 

00 

—00 

Note from (F.8) 

(F.9) 
00 - 

r.y (<T, v)=^    I {juY^i [{-ly G ,,{u)G ^{u)eM^-) + G,^{uj)e^''^^'^''-'^''^] du 

Hence 

00 

\r2^{<r,v)<^   ^ <j[G,,{uj)G^{u)+G,-i[u)^duj   I     ;   (F.IO) 

which is bounded by (F.4) (recall G11G22 = ^,2 + G„ [G„i + G^j] + G'„iG^ ) 

clearly the right side of (F.IO) also bounds \r^{<T, v)\. 

Finally, from (F.9) 

• 00        _ 

\j;   'n{r,r)\<^   j \<^\^[Gn['^)G^{u) + G,1{u)[duj       (F.ll) 
-00 

or the boundedness of (F.3) and (F.5) guarantees (F.ll) is bounded. 

APPENDIX G 

In this appendix an approximation to the conditioned intensity function 

Xg (r) given in Eq. (50) is derived.   It is specifically assumed that the signal and 

noises possess flat bandlimited spectra with one sided bandwidth —   and spec- 

tral magnitudes S/B, NjB respectively. 

First we need the quantities contained in the matrix A of Proposition E.l. 

In Chapter 3, Appendix C the covariance function, <T^ ^, of i?' (r) was derived. 

For coherent correlation processing the result is expressed in terms of the obser- 
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vation time T, the auto-spectrum and cross-spectrum of the observations, G,-(tr), 

00 

''v,.=^   ! Gni<^)G^{u)eM--')+G,liu)eM-^')d^       (G.i) 

The ambiguity process AR ' [r) = R" {T) - R^ (DQ) has covariance 

rooiv, «) = <r„,. + <TD^ D^ -<^DO,» " '^v, Z)„ (G.2) 

with first order mixed derivatives 

rio(v, s) = ±   <T,^,-± ^.,^^ ,        r,,{Tj) = -^ <T.,, L,_   (G.3) 

For the flat signal and noise spectra of interest, and for DQ = 0, specific 

expressions for the r,y can be derived straightforwardly: 

.     .       iS+ N)^    \ i B ,       A      ,B' 

i B ,  ^   A       ,B    , 
4xr 

(G.4) 

(G.5) 

and 

10 
,     .       -(5 + N)^     ,B    , 

+ 
AirT 

giBT)-g{j.   r) 

(G.6) 

■-^^'^) = fFrl^^^7f^^^'(^^) (G.7) 

With respect to the expressions (G.4), (G.5), and (G.7) the following quantities 

have been defined 
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/ »        eosir) - sineir) g{T) =  L-L_ LI       ■ ^Q gj 

g' ix) = -sinc{x)- g{x)/x (G.Q) 

h 1^1 = 1 + 5fnc| j {T- t;)| - sine{j   T) - sine{j v)           (G.IO) 

hlj^l = 1 + sine^j (r+ t;)j - sine{j   T) - smc{^ v)           (G.ll) 

The mean of AR ^ (r), H{T), and its derivative, f;(r), have the expressions 

■   (G-12) Mr) = ^   A (3) 

and 

where the additional quantity has been defined 

(G.13) 

A,(3) = \-sinc{—   T) 

The matrix A of interest is 

A = (G.14) 

It is straightforward, but tedious, to calculate the entries in A"\ where A is as in 

Proposition E.l, Eq. (E.l). Implicitly define the matrix A and its entries a,-, the 

vector 6 and the 6,-, and the scalar  c as follows 

A-» = 
A 

(G.15) 

A = 

b = \b„b,]^ 

(0.16) 

(G.17) 
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The determinant can be calculated 

i^i=(i;^ ii'^*^"^   V ■    '°-'*' 
where 

A = 3 + 2|7i2p + K^r) (G.19) 

I712I is the magnitude coherency and r{BT) = o((5r)"2)   is a quantity which is 

much smaller than 1 if B\T\,B\D„-T\ > 207r. 

For a given Z)„ , r, define the quantities  gi, g^, <^3 and^4 

9i^\j{r-D^^-g^l.   r)  , ^^ = ^[| (r + P^ )] - <K|   r) 

(G.20) 
B B 

93 = -9iY   ^)   '    U = S{B T)-g{j   T)   ,    g'   = g{B T) 

With the above definitions, the entries in A"^ are 

{G.21) 

(G.22) 
-QTTT 

"^    \s+NfA 

247rT 03=- 
(5+^)^5A 

{[^3+hi2p</4][Aia,-D„+hi2pAia,-oJ-[?i+|7:2p!7d[A5„+K^ 

(G.23) 

{[A.!V + |7i2l^ Ar?^]  lAii;„.-o.  + |7i2|^ Ai^.,-z,J - [A/X  + h^P A.!%J^ 

(G.24) 

*i = (J7^  {3(^3 + M'g.]  [ffi + K2l^<72] - [1 + 3|7i2lV ]   [A//]o„ + |7X2P A (2)^j} 

(G.25) 

*2=|^^    {6(A.!li,„+|7l2pA (2)]  [<;i + hl252H[33 +l7l2l'ff.]  [A5„    +|712P A ^^jj 
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■ : ^;"-''-'' - ■ ■   (G.26) 

The terms in A~*, (G.21)-(G.26), are general expressions, valid for all T such that 

\BT\ > 2ir  and   \B[T - D„]\ > 2ir.    However,   we   are   primarily   interested   in 

approximations to X^ when r is such that 0{{BT)-'^] and 0{{B\D^-T\)-'^]   terms 

can be neglected.   For simplicity O{{BT)~^]  will be used to denote both of the 

above   O  notations.   With this in mind, up to O{{BT)-^)] ,  (G.21)-(G.26)  are 

equivalent to the compact identities 

a, = 
2TBT 2 + l7 121 

(5- + iV)2      3 + 2|7i2p 

^2 = 
.T       ^i  1   ) 

{S+Nf     [BT \ 
fl, = 24Tr     _i_ 

(5 + iV)2     B 

-2irBT        1 + !7i2l^ 

(G.27) 

-2TBT        A + |7i2r _T^x        (  1   ] 

2:rBT 2 + [712^ 

(5 + iV)2      3 + 2|7i2l' 

For the above, the following approximations were used 

(G.29) 

Aj}) = 2,   A,,(2) _ 1^   ^j = <,2 = i73 = i/4 = o[-^ ] 

where the above quantities are defined in (G.IO),  (G.ll)  and (G.20).   From 

(G.27)-(G.29), we can compute the rf,- making up the matrix 

c 

di 
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in Proposition E.l.  The results are 

d,= 2TrBT 

(5 + AO'     2 + I7i2l^ 
.     ^2 == 

TTT 
(G.30) 

(5 + ^)2 
0(l/Br)   ,    d,= a.. 

We will also need the quantity 

b. 
a = 

which is a function of Br but not of SNR. 

Br (G.31) 

Now from the equations for /i(r) and T/(T), (G.12) and (G.13), and the rela- 

tions (G.27)-{G.29), we can derive expressions for 9 and f = s/T^i in (E.6) and 

(E.7) of Proposition E.l        , 

9 = 
h h 

-,i{-D„)-^   rf{r)--L   ti{r) 

d3^ = 
«3 

v/7 

^3 

{G.32) 

(G.33) 

where x^ = -€ is set to 0 in Proposition E.l.  The specific results for the present 

case are, up to 0(1/BT) 

h 121 
e = 

1(2 + |7i2p) (3 + 2|7i2p)]^/' 

f = hul 
BT 
IT: 

0{1/BT) 

(G.34) 

(G.35) 

Note the similar dependencies of 9 and f on the quantity |7i2K-Sr/2;r. 

Recall the form ot K(T) in Eq. (E.4) with XQ = e = 0 

K{T) = 
2x>/7 |Ap/2 

^ 

1 
exp 

/     77 
(G.36) 
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Here we will need KiTJ/d^.  From the above it is straightforward to calculate, up 

to 0(1/571 terms V    ^'  ■   ■ 

K{T) = 
B 

.\ ;-■;.:■,.■  (G.37) 

\/2Th5 

We will investigate the fonn of the conditional intensity, X^ (r), under condi- 

tions of either large or small signal-tonoise ratio, l^jj] VBT, or, alternately, large 

values of B\T\ and B\T-D„\. We first consider the latter case, which 

corresponds to an investigation of X^ (T) outside of the high sidelobe region of the 

signal-autocorrelation function. f ; 

Make a change of variable, v = ^/d^ y, in the integral associated with the 

intensity function, Eq. (E.3) 

00 

X, (r) = K{T) J y4>{ay + 9) exp(-<i3 [y + ^)2) (G.38) 
■ 0 

This yields the equivalent expression 

K{r) = ^/2iK[T)/d^H[a) (G.39) 
where 

00 

H(a) = / y^ay + 9) <i){y + ^)dy (G.40) 

Here a and f are as defined in Eqs. (G.31) and {G.33), and 0 is the standard 

Gaussian density function.   The integral H(a) will be expanded in an asymptotic 

series about the parameter a, a(r) = 0 -J-   , defined in Eq. (G.31) to motivate 

the uniform approximation 

H{a) = ^e)4,[^) (G.41) 
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The next step is to show sufficient regularity of the integral H{a) in order to 

exchange derivative and integral operators. The first derivative of the integrand 

of H{a), {G.40), is uniformly continuous in a and has a bounded integral 

and 

—   y^ay + B) <p{y + f) = y^<p{ay + 6) 4>{y + f) 

'"    - -'.':.■'...    ^ ■■■'■.■   ~ i^  '■--■■ [ 

00 oo 

/ y^iay + (?) ^(y + ^)dy < -=   / y^<i>{y + ^)dy 

1  = -f <t>{^) + (?2 +1) (1 - m\ = p i(f) 

p 1 is finite since  for the Gaussian density 0 [10] 

and 

lim   f«?i(f) = 0 
|J1-OO 

lim   f»[l-${f)I = 0 
If)  -00 

Likewise, the second derivative of the integrand of H[a) 

da 
2   y^ay + 5) ^(y + f) 

and 
= -y\ay + 9) <i>{ay + 9) <t>(y + f) 

/ y2(ay + 0) <i){ay + 9) <f>{y + ?) dy 

00 

(G.42) 

(G.43) 

(G.44) 

{G.45) 

(G.46) 

0 

= 3! |aU(f) P_,(f) +1^1 p,(f) = p2(f) 

where /)_t,(2) is a parabolic cylinder function of order v [9] and pi(f) is as in 

(G.43).  Note from [9] 

lim   <^(f)Z)_4(f) = 0 (G.47) 
f —  00 

and since 9, ^ ^ I712I VBT/{47r) (see Eqs. (G.34) and (G.35)) 
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Ihn      1^1 p(f) = 0 
1*1. Id - 00 

The boundedness and continuity properties of the integral and the integrand 

respectively imply sufficient smoothness so that the Taylor remainder theorem 

can be invoked ^ , 

Hia) = H{0) + aH' (0) + 0^2 H' ' (S) (G.48) 

where a is in the neighborhood of zero, and the differentiation and integration in 

H' and H can be interchanged. Performing the integrations involved in H(Q) 

ajid H* (0) we obtain 

H{a) = ^9) {^(f) - ^1 - $(f)]) O :   : (G.49) 

r :;   + <^m Pi(?) + 0(a2) p2(f) 

Note that since f and a are 0(l/(5|rj)), in the sense that both l/{B\i\) and 

V(^l^m-^) dominate f and a, Eq. (G.49) suggests the approximation given in 

Eq. (G.41). Investigation of the relative magnitudes of the various terms in Eq. 

(G.49) indicates that if both ^Irj and B\T-D„ \ exceed 207r then the approxima- 

tion (G.41) is within about 5% of its actual value. Hence, the approximation 

(G.41) will be valid over the majority of the of the a priori interval for large 

BD„ forallSNR. 

We next turn our attention to the case where the 0(B|7i) term a(r) is large, 

e.g. in the sidelobe region of the signal auto-correlation function. It can be shown 

that a = a{T), Eq. (G.31), is bounded for all r such that B\7\, B\T- D„\ > 2ir. 

(Just use the relation |(7,| < —   in (G.25), (G.26) and (G.30)).   Therefore, using 

(G.44), (G.45) and (G.47) in the expressions for pj and p^, (G.43) and (G.46), 

Pi(f) and P2(f) go to zero as f and ^ become large, which occurs when 

I712I y/BT — 00. However, if l^ijj VBT is not large, then the terms involving a, 

in Eq.   (G.49), may be significant.   Nonetheless, it is possible to show, by using 
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integration by parts of H{a) for a ^ 0, that 

^a) = $(^)>(f)-^l-$(f)$(5)) 
(G.50) 

+ 
l + a=^ 

4> l_$f_£±^ 
Vl + a'' 

4> 

+ A  ;,(.) 

where 

a  I,     or a 
l-$(f ) 

Of 
(G.51) 

Now as I712I \/5T, goes to zero for finite a, R{a) -* 0, and from (G.50) 

H{a) -. <I»(^) 0(f) + J-        1 (G.52) 2x     1 + a2 

The right hand side of (G.52) can be quite close to (G.41) in the high sidelobe 

regions where a may be large. 

Combining (G.49) for small 0{B\T\), with (G.52) for large 0(51^) , it follows 

that for the following approximation to the intensity 

K (r) = ^  m <P{^) (G.53) 

the approximation error b small for the following cases B\T\ and B\D^-T\ 

greater than 20r; l^jjl \/BT » 1; or both I712I VBT « 1 and a^ large. In 

the sequel we concentrate on the first of the three cases mentioned above. 

The final form of the time independent intensity approximation used in Sec- 

tion VI is obtained by substituting the approximate expressions for 9 and f, 

(G.34) and (G.35), into (G.53).  Using f ~ 0, we obtain 

X. (T) = 
B, 

^12   x/iTKJ 
^(V   V^Tr (3 + 2hi2ly/^) 

${7' VBTT] 
(G.54) 
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where we have defined the normalized signal bandwidth Bn in Hz 

2jr 

and 

Bo = ^ (G.55) 

^ V  2 + |7i2l 

For the example considered in Section VT, the function a(r) is plotted in Fig. 

6.1. From Fig. 6.1 two things are clear, a is of small magnitude over the major- 

ity of the a priori region of delay [-/)„ , 2x/5] ([ -8, 0 ] in the figure). Also, a 

has a small average value over the regions where a itself is large. Therefore, the 

integral over the a priori region is approximately independent of linear terms in 

a.   Consequently, the approximation, (G.54), can be said to be accurate to 0{a^). 

APPENDIX H 

Here we derive the identity 

P{ui e[t,t + A], some i = 1, 2,   • • •   , *) (H.1) 
-\k-l 

= X(0  •  A 

/ \{s)d3 
I 
jj^    exp{-/ \{3)ds} 

where w,-  are discrete times within the interval /= [/Q, t^] at which a Poisson 

count process on /, N' [I], generates points.   Here N* is assumed to have the 

time continuous intensity X, and A is an infinitesimal quantity. 

The left hand side of (H.1) is equivalent to 

(H.2) 
(m-l m+l-l k \ 

n {a;.- elto, t]},  n  K e[t,t + A]},   n   K G [^ + A, L]}\ 
,,.=.1 '"1 '—m i=m+t '      ) 
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where (H.l) has merely been expressed as the union of the disjoint events: m-1 

points preceed time /; / points inhabit [t, t + A\, k - (m+0+1 points follow time 

t + A.        ■ ' ;:'■::''' 

For sufficiently small A, the orderliness property of the Poisson process [15] 

guarantees that all but the following terms in (H.2) are negligible 

k        (m-l k \ 

E nniui e[to,t]},{uj^ e[t,t + A]},   n   {UJ^ e [t + A, t.]}\ 
m—1      ^•="* I—m+1 '      } 

From the independent increment property of N *, (H.3) is identically 

(H.3) 

to 

m-l 

k 
/    \(s)ds 

f    \{s)d3 
t + A 

{k-m)[ 
exp{-/ \{s)ds} (HA) 

to 

Or use the continuity of \{s) to obtain from (H.4) 

\{t)  . A  E 
1 (m-l)\{k-m]\ 

t 
m-l 

tf 

/ \{s)d3 
to 

/ \is)ds 
t 

1 k-m 

(H.5) 

Finally recognize the following to obtain (H.l):  the sum in (H.5) is equivalent to 

k-l-m 

1 *-i 

E 
m—0 

(*-l)! 
{k-iy. m[{k-l-m)\ 

1 
(^-1)! 

t 

! Hs)ds 

m 
tf 

I Ms)ds 

/ Hs)ds 
to 

k-l 

(H.6) 

where the binomial theorem has been invoked. 
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Lowpass Auto-corralatlon with Associated Parabola 

t/(i) = /?,,(0) + r/2"(0)/2 

Fig. 2.1 
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(X^C't) for Lowpass Signal Spectrum 
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Conditioned and Unconditioned Rate Functions 
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Intensity Surface for Lowpass Signal Spectrun 
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Various Large Error Probability Approximations 
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Various Large Error Probability Approximations 
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Various Large Error Probability Approximations 
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Intensity Surface for Banpass Signal Spectr 
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SNRCdB) Thresholds Predicted by Ziv-ZaKai Lower Bound 
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Rate Function for High and Low Bandwidth 
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Error Probability for High and Low Bandwidth 
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Error   Probability for High and Low  T 
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Chapter    6 

Additional Topic3 

1. Introduction 

In this chapter two novel time delay estimators will be presented. Because 

of time and space limitations, a comprehensive analysis is not the objective here; 

rather it is to explore in a preliminary manner some interesting additional alter- 

natives to the classical techniques. Hence, the presentation and development will 

be informal. 

In Sections H, HI and IV, we turn to time delay estimation for highly nar- 

rowband signals, that is when the cross-correlation function is oscillatory and 

ambiguity prone. A reinterpretation of the work of Chow and Schultheiss [4] on 

the Barankin lower bound reveals two facts: 1). our definition of SNR in Chapter 

2, SNR 1, plays a major role in the determination of the lower bound on achiev- 

able estimation error , and 2). phase information contained in the observations 

becomes essentially useless at very low SNR. The above observations are used to 

motivate a hybrid estimator structure, a GCC which acts on both the observa- 

tions and their envelopes. We then seek to optimize the structure by penalizing 

poor local (small error) performance while maintaining acceptable (low) sidelobe 

activity (large error). The form of the optimal hybrid processor is then displayed. 

This involves locally optimal GCC processing, combined with equalization via a 

tapped delay ine. . 

In Section V, a method is presented which transforms the inherently non- 

linear problem of estimating time delay into an (approximately) linear estimation 

problem. This is accomplished by operating on the cross-correlation trajectory 

with a linear, invertible, transformation, which demodulates the time delay 

directly onto the correlation domain. Optimal and sub-optimal procedures are 

then advanced as possible estimation schemes. 
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n. Background 

The observations, over [0, 7], containing the time delay parameter, D, are as 

in chapter 3, Eq. (1). That is, it is assumed that two stationary Gaussian 

waveforms are available, each containing a common, but delayed in one case, 

Gaussian signal, s{t), here of one-sided bandwidth B, buried in broadband mutu- 

ally uncorrelated Gaussian noise processes , n i{t) and n2{t). For sufficiently 

large observation time-bandwidth product (BT) the Cramer-Rao Lower Bound 

(CRLB) on the variance of any estimate of D, D can be calculated [l], [2]. Specif- 

ically 

JcRLB(D)^-r-:    j   W^-  dw 1 
2T     ..        l-|7i2(«^)P . -oo 

where JCRLB i^) is the inverse of the CRLB, or the Fisher information, and as 

usual, |7i2(«')l^ is the magnitude squared coherency defined in Chapter 2, Eq. 

(10). Since |7i2("')P measures the importance of signal energy relative to noise 

energy at a given frequency w, JCRLB i^) can be interpreted as a measure of the 

frequency spread of usable signal energy for lowpass signals (See Fig. 2.2a). 

Recall, at high signal-to-noise ratio (SNR) the performance of the GCC is 

well characterized by the local approximation to estimator variance, given by 

Chapter 3 Eq. (23). As discussed in Chapters 3 and 5 the local variance assumes 

its minimum value when the Hannan Thomson (H.T.) weight is used for V/{w) in 

the GCC. (For definitions of the GCC trajectory with weight W[w) and the H.T. 

see Chapter 2, Eqs. (6) and (13)). Furthermore this minimum is identically the 

CRLB, the inverse of JCRLB i^)- As was discussed in Chapter 2, the GCC perfor- 

mance measure SNR ^, ch. 2, Eq. (12), is maximized over all W[w) by the H.T.. 

Consequently, it is clear that the H. T. has a strong claim to optimality when BT 

and the signal-to-noise ratio are large. 
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However, SNR j is only reliable as a local (small error) performance measure 

since it applies equal penalty to all errors, large and small (Recall discussion in 

Section II of Chapter 2 ). In addition the CRLB on the error variance is 

unachievable below a certain SNR threshold determined by the center frequency 

to bandwidth ratio (wJB) and BT (for bandpass signals) [3], [4]. Therefore the 

H.T. can only be considered optimal in a restricted sense, which we will refer to 

as local optimality. In [3] a tighter lower bound on the error variance than the 

CRLB was derived, based on the Ziv-Zakai lower bound (ZZLB). The ZZLB 

based bound can be considered a composite bound made up of the following as 

the SNR varies from high to low values: the CRLB, a version of the ZZLB, the 

Barankin lower bound (BLB), and finally the lower bound given by uniformly dis- 

tributed estimates throughout the a priori region of time delay. A typical exam- 

ple of the behavior of the composite bound is roughly reproduced from [3] in Fig. 

2.1 for clarity. 

Using intuition gained from an investigation of the specific form of the 

Barankin bound derived in [4], a more global measure of performance is proposed, 

i.e., a measure which is reliable for a greater range of SNR. This measure can 

then be optimized to yield an interesting processor structure. 

m. Interpretation of the Barankin Bound 

In its original form, as proposed by Barankin [5], the Barankin lower bound 

is a greatest lower bound on an unbiased estimator's error variance. In other 

words, there always exists an estimator which achieves the Barankin bound. 

However the form of the bound and the construction of the optimal estimator are 

difficult. The specific form of the Barankin lower bound used in the context of 

time delay estimation [4], the BLB, is a considerably weaker version of the origi- 

nal Barankin bound and is not acheivable in general.   Nevertheless it is tighter 
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than the CRLB for sufficiently low SNR, by orders of magnitude in some cases, 

and as such gives more insight into the limiting factors affecting performance. 

In [4] a general expression for the inverse of the Barankin bound, which we 

will refer to as JQ (D), in the context of time delay estimation is given for nar- 

rowband bandpass signal spectra. The result in [4] is derived under the assump- 

tions of multiple (M) sensors, white noises, large BT, and large center frequency- 

to-bandwidth ratio {wJB). This expression, [4, Eq. (20)], will be adapted to the 

present case of interest, i.e. M=2 and low SNR. In Eq. (20) of the reference, iden- 

tify the ratio of signal and noise spectra as the magnitude coherency squared, 

I7i2(«')l^- Use the following low SNR approximation {G{w) a SNR): 

exp{-/ln(l - G{w))dw} - 1 = jG{w)dw, to obtain an expression equivalent to 

Eq. (20) of [4]: . 

-       •^(^) = ir h\-\--o)'-^^^^f^ dw (2) 
;        : ^^    -00 1-I7l2(«')r 

In (2) we have transformed the summation in Eq. (20) of [4], indexed over a dense 

set within a segment of the positive real line, to an integral over the entire real 

axis, by using identical large BT assumptions as were used in [4] to obtain Eq. 

(23) of [4]. 

The important difference between JgiD) and JcRLsi^)^ (1) ^^^ (2), is that 

while JCRLBI^) measures the zero centered moment of the spectral quantity, 

l7i2(^)lV(l - l7i2(«')P). -^si^) measures the second moment centered about the 

center frequency w^. Thus JQ (Z>) is a more accurate indicator of the actual 

spread of signal energy over frequency than JcRLB i^) (See Fig. 2.1b). It is useful 

to investigate the form of Jg (£>) for highly narrowband signal spectra. Multiply 

out the square term in (2) and distribute the integral over the resultant three 

terms. Note that if |7i2(^)l^ is highly concentrated about the center frequency 

w^   then  \w\/Wg   is approximately  unity over the  «;-region  where  |7i2(w)p  is 
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significantly non-zero.  Hence we have as an approximation 

One can now identify the difference in (3) in terms of the minimum local vari- 

ance, Eq. (23) of Chapter 3, var£ = minlvar^ [D)}, i.e. the CRLB, and the max- 

imum of SNR 1, Eq. (12) of Chapter 2, SNR { = max{5M? J, both achieved for 

theH.T. GCC ■•   ■- -^-/^^^ 

JB[b) = -L^   -w,^SNR{ (4) 
varf 

This interesting result implies that, while the local measures, var^ and SNR ^ are 

not individually sufficient to characterize the large error performance of the 

optimal estimator, a linear combination of these local criteria does parameterize 

the large error performance for sufficiently narrowband bandpass signal spectra. 

In the following section this fact is used to motivate a composite local perfor- 

mance criterion, p = var^ + l/w^^ g^j^ -i^ ^^^^^ ^^^ normalization of SNR j is 

to make the two components of p of similar order of magnitude. 

Observe that the BLB corresponds to the CRLB in the case where only the 

envelopes of the observed waveforms, Xj and Xj are available. Hence the high 

frequency components in the observations play no part in the BLB. In so far as 

the BLB is indicative of the optimal estimator's low SNR performance, this 

implies that the phase information in the bandpass signal, s{t), is useless at very 

low SNR. It was suggested in [4| that at low SNR a near optimal time delay esti- 

mate can be obtained by passing the envelopes of the observed waveforms 

through a cross-correlator instead of the observables themselves. A more general 

implementation, using a GCC, will be referred to as the GCC envelope processor. 

Cross-correlation of the envelopes was motivated in [4] by consideration of the 

asymptotic form of J^ (D), Eq. (20) of the reference, for the special case of flat 
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bandpass signal spectra. It is easily seen that any one of the GCC weights, 

W[w), discussed in Chapter 2 is suitable for the GCC envelope processor in this 

particular case. In the general case, the local variance of the GCC envelope pro- 

cessor, var^ {D), is straightforward to derive from the local variance expression of 

Schultheiss [6] (See Ch. 3 Eq. (23)) 

00 

var, {D) = 

-^   / {\w\-w,fGu{w)G^{w){l-\n,,(w)f)\W{w)\^dw 

00 

-^    / (\w\ - w,f\G,2{w)\W[w)dw 
^^      -00 

-     (5) 

where, as in Chapter 3, the auto-spectra and cross-spectra of the observed 

waveforms have been denoted G n, G^ and G ^^ respectively. The local variance 

expression of Eq. (5) is minimized by W^i/r(l«'|-«'o )> * frequency shifted version 

of the optimal H.T. weight given in Chapter 2 Eq. (13), and repeated here 

ur    (   \ 1 biM? 

\GnK^)\     l-hi2(M')l 
A 

Furthermore the minimum of var^ [D], taken at W[w) = W^^rd^'^h^'o )> is identi- 

cally the BLB, the inverse of JB{D) in (2), Hence the H.T. envelope processor is 

locally optimal for narrowband bandpass signals at low SNR. 

The expression, (2), for the inverse of the BLB is only valid for very low 

SNR. Near threshold, where the BLB is exceeded first by the Ziv-Zakai and 

finally by the CRLB, exclusive processing of only the envelopes of the observa- 

tions entails a loss in important phase information. In the next section a more 

sophisticated processor is proposed, which is based on the optimization of a 

hybrid GCC-GCC-envelope-processor structure. The optimization is performed 

with respect to the local variance of this hybrid. However, since the variance is 

only  a local approximation, we will add additional design restrictions on the 
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optimal processsor by adjoining constraints which control the ambiguity prone 

sidelobes of the GCC. 

IV. The Hybrid Processor " 

; The approach taken to optimize a combined envelope and nominal GCC 

processor is to penalize the candidate processor for poor local performance (small 

errors) while constraining it to supress its ambiguity prone sidelobes (large 

errors). The specific processor structure which we will investigate is displayed in 

Fig. 4.1, the GCC—GCC-envelope processor. Two envelope waveforms are 

obtained from the narrowband bandpass observations, ar, and x^- A common 

reference carrier, of frequency w^ (identical to the center frequency of the i,- 's) 

and with uniform random phase, «?i, is used to heterodyne the observations down 

to zero frequency. These envelopes are then mixed into the observations to form 

the composite bandpass and envelope waveforms, Xj and Zj. The mixture of the 

envelopes into the observations is controlled by the parameter a where a G [0,1]. 

The resultant composite waveforms are subsequently processed by a classical 

GCC to form the peak estimate of time delay, D. Note that the stationarity of 

the observations, and the random phase assumption on the heterodyne waveform, 

imply that the spectra, ^ix[w) and $22(«^). and cross-spectrum, ^i2(w), of ij and 

X 2 are simply 

^ij [w) = a^Gi- («;) + {\-CLfGi- [\w\-w,)  , ,; ; = 1, 2 (7) 

Here, as in Chapter 2, C?,y denote the various auto- and cross-spectra of the origi- 

nal observations Xj and x<^. 

We  will  consider the  following particular penalty  function  on  the GCC 

weight VV(w) (local performance measure) 

p{W)=vaT^[b) + -^   SNR,-' (8) 
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where var^ denotes the local variance, Eq. (23) of Chapter 3, and SNR ^ is the 

SNR introduced in Chapter 2, Eq. (12), and discussed in the previous section in 

connection with the BLB, Eq. (4). Note the above measures are with respect to 

the estimate yielded by the hybrid GCC-GCC-envelope-processor. 

The specific combination of processor structure and penalty function , Fig. 

4.1 and Eq. (8), was chosen because of our ability to emphasize locally optimal 

performance at either high or low SNR by choice of a. Indeed, for a = 1, Eq. 

(8) takes its global minimum when the locally optimal HT weight, Wffj-{w) in 

Eq. (6), is used in place of W[w) in Fig. 4.1, while for a = 0, the minimum is 

attained for the HT implementation of the GCC envelope processor, i.e. 

W[w) = Wff-pdwl-w^). Thus a can be considered a parameter which adjusts the 

sensitivity of the penalty function to the SNR operating point of the hybrid pro- 

cessor. 

In addition to local performance, characterized by p{W), we are interested in 

good large error performance of the hybrid GCC with filter W. In this aim we 

impose the following inequality constraints on the envelope of the GCC output, 

Ro in Fig. 4.1. 

E[J-  R^iT)Uo]<-K . (9) 

E[R^D+^   )]<r„   ,     n = -N,..,0,..N (10) 

In (9), K is the magnitude of the curvature of the output of the hybrid processor 

at the true delay. Therefore (9) constrains the resolution of the peak at D rela- 

tive to small errors. Eq. (10), on the other hand, constrains the resolution rela- 

tive to large errors by maintaining low magnitude sidelobes (low magnitude 

envelope curvature). The particular form of constraints (9) and (10), for the 

GCC with weight W[w), can be derived from Chapter 2, Eq. (4), and the assump- 

tions contained therein, by identifying 



185- 

, CO 

2x (11) 

00 ■   n2y 

E{R^(D+^   )] = J-    J \G ,,irv)\W{rv)e'^-'   dw (12) 

The expressions for the GCC local variance and SNR j are obtained from Eq. 

(23) of Chapter 3 and Eq. (12) of Chapter 2, by substituting the present input 

spectra, of Eqs. (7) and (9), in place of the spectra contained in formulas (23) and 

(12) of Chapter 3 and Chapter 2.  The results are 

and 

00 

-    '       -^   /  w^F{w)\W[w)\^dw 

1 
-^    / w^G{w)W{w)dw 

-00 

(13) 

SNR fi 

1 
-^   / F{w)\W{w)\^dw 

1 
—     /   G{w)W{w)d: w 

(14) 

where the following spectral products have been defined in terms of the spectra 

of ii and ^2, *^.y(^)'^'j = 1'2 

G{w) = \^,^(w)\ 
and 

(15) 

/Tu;) = $ii(«;)$22(«') - G^w) (16) 

In the present case we are interested in highly narrowband bandpass signal 

spectra. In this case the substantial portion of signal energy lies within the nar- 

row frequency region \w\ 6 [w,-B/2,w,+B/2]. For the proposed hybrid imple- 

mentation of Fig. 4.1, this implies that the inputs to the GCC , Xj and x^, will 
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^0 
have negligible signal related energy outside of narrow regions centered about 

and zero frequencies. Certainly any reasonable weight V/[w) will attenuate the 

components of the GCC inputs outside of these regions. Consequently, as will be 

seen, the optimization of the bandpass and lowpass partions of W[w) can be 

decoupled. For a typical W(a;) see Fig. 4.2. 

Inequality constrained minimization problems can be attacked in different 

ways, see e.g. (6). Since the object here is to quickly arrive at an optimal struc- 

ture, we will assume that the so called Kuhn-Tucker conditions are satisfied for 

the constrained minimization of p{W), (8) subject to (9) and (10). In this case a 

necessary condition for a given W{w) to be optimal, in the sense of minimizing p 

over the constraint region defined by (9) and (10), is that it be a stationary point 

of the Euler-La^ange form 

(17) 

var^{D) + -^   SNRf'+^.El^   ^M^)Uz?I+   E   \E[R^D+^^^   )] J_   CA;O-1 ^ . i?r ^     Dff/_u       i  .    v^   \.E[R^D+— 

Where f^ and X,- i=-N,..,0,..N are constant multipliers which are yet to be 

determined, and depend on the constraint regions. The form (17) can be written 

explicitly as an integral over frequency of the functions of observation spectra, 

Eqs. (15) and (16), and the GCC weight W{w) 

00 

jdww^Flw)-!^   \W{w)\'^ + F[w)-L   |W(^)|2 (18) 
-00 ^ ^0 

.   f»2ff 

+ ^,w^G{w)W{w)+   ^   \„e     "'     G{w)W{w) 

Now express F{w) and G{w) in (18) in terms of the spectra <&,y(w) (See Eqs. (15), 

(16)). These quantities can in turn be expressed in terms of the disjoint spectra 

G.y (w) and (?,y (|«;|-«;,) (See Eq. (7)) to yield the equivalent form to (18) 
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/ a' 1     ' .2. K' JtO- 
n2ff 

77  («''+7T  )^.(«')IM«')I'+ (?.«''+   E   Xn^""'    JC.lt.jMtu;) 

+(1-^) 
Ji K'- 

n—;V 

,, •   n2jr 

(19) 

-^ («''+-i- W.MlMy^t + {^0^^ + E ^n«   "'   )G.(t.)wtt.) K 
dw 

where i^„ and G^ are products of the nominal bandpass spectra of the observa- 

tions ^ 

K M = GnMG22M{i- - l7i2(«')l^)  ,      G, {w) = \G i.{^)\ (20) 

and Fg  and G^ are the lowpass equivalent spectra to the above 

F, {w) = F, (\w\ -w,)  ,      G, [w) = G, {\w\ - w,) (21) 

It has been observed that M^u;) is significantly different from zero only on the 

support of G,, F, and G, , F, , which are highly concentrated in 

H e ( w,-B/2, w,+B/2] and w G [-5/2, 5/2] respectively. As a consequence, 

the specification of W[w) over the bandpass frequency region can be made 

independently of that of W[w) over the lowpass frequency region -(the two terms 

in brackets, [..], in (19) are non-zero over essentially disjoint frequency regions). 

(19) can therefore be decomposed into two seperate forms to be minimized, the 

one involving the bandpass spectra, F,, G,  and the other involving the lowpass 

Formal differentiation of the resulting equations with respect to W{w) yields 

the following necessary conditions for W{w) to be an optimal GCC weight, which 

we denote W^pt{w) 

^opt M = 
GAw) GAw) 

FAw) FAw) 
K' 

w^ + a^ 

(22) 

^0^^+   E   ^»« 

n23r 
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Here a^ = K^/rJ^. Observe that X„ can be expressed as X, = X' + f^ a^, for 

some constant X . Hence, without loss of generality, we can rewrite Eq. (22) in 

its final form 

K,tH = 
GAw)     .   GAw) + FAw) FAw) K + 

w^ + a^ 

N .    n2ff 
-jw  

X. -      ''' (23) 

where we have ignored any constant scaling of W f. 

From the defining relations of G„, F„, G^, and F, , Eqs. (20) and (21), 

recognize the locally optimal HT weights Wfjj-iw) and W^j-dwl-Wg) for the 

observations and their envelopes respectively 

"   GAw)  ■;.■;. :;r;y::/;--^-.v-^ 
^HTH = 

KH 

Wffr(\w\-w,) = 
FAw) 

(24) 

(25) 

The sum  G, /F, + G^ /F,, in Eq. (23), will be denoted the locally optimal 

hybrid weighting Wi^{w). 

The structure of the optimal hybrid processor is displayed in Fig. 4.3 in 

block diagram format. Here the notation TDL denotes the implementation of the 

sum of weighted exponentials in (23) as a tapped delay line. The processor 

reduces to the following sequence of operations on the composite waveform Xj 

and 12- First locally optimal processing is performed on the composite 

waveforms using the Hannan-Thomson locally optimal (hybrid) weighting, Wi^ ; 

the sum of (24) and (25), in a conventional GCC. The output of the GCC is then 

passed through a two branch network. One of these branches, the lower one in 

Fig. 4.3, simply implements the locally optimal estimator by passing a scaled ver- 

sion of the output of Wi^ directly to the output, R". The other branch is more 

interesting.    It   takes   the   ambiguity   prone   output   of   W,^    and   performs 
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equalization, via a tapped delay line structure, to minimize sidelobe activity. The 

resultant waveform is then lowpass filtered to remove spurious high frequency 

peaks, which could cause ambiguity. Finally the equalized and filtered waveform 

is combined with the locally optimal GCC output to form the peak generating 

sample cross-correlation function, i? ^. 

As the above development suggests, the final configuration is intuitively 

satisfying. The next step would be to simulate the processor and compare it to 

others which have been designed for narrowband lowpass signals, e.g. the 

Hassab-Boucher (HB), reference [2) of Chapter 2, and the simple envelope GCC 

suggested in [4].  This will be a subject of a future study.   1 

V. Conversion to a Pseudo-linear Form. 

Here some ideas and preliminary results are presented concerning a pro- 

cedure which transforms the multi-waveform, non-linear time delay estimation 

problem: estimate Z? G (-^„ ,/?„] from 

Xi{t) = s{t) + n,(/) (26) 

:    .      te[0,T] 
X2it) = s{t-D) + n2(t) 

into the single waveform, pseudo-linear, time delay estimation problem 

m = D + v{t) t£[t„t.] (27) 

where, under certain assumptions on the signal, s{t), r]{t) is a non-stationary noise 

process, fg is a constant, and 11 is a. parameter determined by a "genie" algo- 

rithm, to be specified in a moment. We use the "pseudo-linear" nomenclature for 

(27) since f, depends on D in practice. The transformation yields a sufficient 

statistic, so that the resultant statistic (related to H[t) above) contains as much 

information on the delay parameter as the original observations (26). 
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Although the technique can be applied to the original Gaussian signal case 

(In which case D gets multiplied by a random process, dependent on D, in (27)), 

the treatment to follow will be restricted to the deterministic signal case. How- 

ever D may be a random variable. Two specific signal characteristics will be con- 

sidered: 1) ^t) of finite time duration (finite energy), T^ ; and 2) s{t) periodic 

with period T^ and low duty cycle. For 1), the signal, and its delayed version, 

are assumed to be entirely contained in the observation interval [0,7]. For 2), 

the delay is restricted to the interval [-D^ ,Z)^ | = [-T^ /2, T^ /2]. 

As before, form the sample cross-correlation function between Xj and X2 

. . 1     ^   -■ 

^i2('-) = ^   J x,{t)x2{t+T)dt   , r£[-T,T] (28) 

Recall the decomposition of R 12 in Chapter 2 , Eq. (5). The identical result 

holds here once the signal auto-correlation function is defined for the determinis- 

tic case 

^     ■'■'...      ■ 

R,Ar) = Mt)4t-{-T)dt (29) 

for the finite energy signal, and 

1     ^ 
^,Ar) = ±   Js{t)sit+r)dt (30) 

for the periodic signal. In defining (29) and (30) we have used the assumptions 

on the time extents and period of s{t) and 8{t-D), discussed in the preceeding 

paragraph, to ensure that (29) and (30) are well defined (independent of T). The 

decomposition of (28) can then be expressed in the form 

Ri2{r)=r{T-D) + RjT) (31) 

where i?„ is the sample cross-correlation between the different noise and signal 

times noise terms in R 12 
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T 

Ki^) = -^   I (ii>2{t+T) + ni(t)3{t-D+T) + ni{t)n2{t+T)] dt        (32) 
0 

and ■ 

Kr) = Y   ^"('•) (33) 

for the finite energy case, and 

■    ^^ = ^"(^ (34)   "^ 

for the periodic signal. 

It is straightforward to show that R„ , in (29) and (30), takes its global max- 

imum at D and is also symmetric about D. Therefore r{T) can be regarded as a 

true autocorrelation function. This is in contrast to the random signal case, 

where in the decomposition of Chapter 2, Eq. (5), R,^ is only an asymptotic 

approximation to an auto-correlation function. 

It is immediately verified that the cross-correlation noise, i?„ in (32) is zero 

mean, as in the random signal case (See Chapter 3). A bit more tedious, is the 

calculation of the covariance, (7{t,T), of /?„ , which is, however, derived analo- 

gously to the derivation in Chapter 3, Appendix C, for the random case. The 

result is 

(35) 
T 

'^(^^) = Y     /J^„l(a^»2(e+M(l - -^    ) + Rn2U+t-T)r^'\0 + Iinl{Or^^\a,T,D)\ d^ 

where 

r(»)(0 = ^     /  siu)s{u+\^\)du (36) 
-'       0 

and 

ri^\a,r,D) = ^     / s{u+t-D+\^\)3{u+t-D+T)diy (37) 
■'       0 
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and R„{, i = 1,2 , are the auto-correlation functions of the observation noise, n,- 

in (26). Note, as in the random signal case, the covariance is a function of D and 

depends on t and r in addition to t - T. 

Define the constant L 

:        ^   L = D„ +T,     ;   : (38) 

and the (linear) function of i? j2 

t 

■       ■ H{t)= f rRMdr ,       te[-L,L] (39) 
-L 

Note that H is invertible ( R M = - dH{T)/dT ). Use the decomposition, (31), 

in (39) to obtain 

t t 

H{t) = / 7T[T-D)dT + / r/?„ [T)dT ,       t e l-L,L] (40) 
-L -L 

Now make a change of variable in the first integral on the right of the equality 

(40) and identify the noise term ij 

„   . t-D t-D 
H{t) = Dj    r{T)dT+  +   /   Tr{T)dT + r]it) (41) 

-L-D -L-D 
where 

t 

ri{t)= f TRjT)dT (42) 
-L 

The covariance of rj can be calculated straightforwardly from Eq. (35) 

t        r 

& [tj)= j du { dfi (T{i^,fi) (43) 
-L      -L 

In its present form, Eq. (41) is not quite linear in D. However, if r(r) is of 

width T^ , then, because of the symmetry of r{T), the first two integrals in (41) 

are zero for -L < t < D-T^ , and the first integral is a known constant, the 
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second zero, for D+T^ < ^ < L. As a consequence, neglecting the influence of 

the ZP-dependent noise, i?„ , H{t) is linear in D over the latter interval, and 

independent of D over the former. 

For simplicity assume that r(r) is a narrow pulse (broadband signal case). 

Then make the approximation 

m = Dv{t~D) + fi{i)  ,       te {-L,L] (44) 

where «(r) is the unit step function, taking values zero, for negative r, and one, 

for positive r. For unknown, deterministic D, the maximum-likelihood estimate 

of D can be specified under a Gaussian assumption on the zero mean noise, rj{t). 

The resultant (classical) estimator is illustrated in Fig. 5.1, which seeks to minim- 

ize the (prewhitened) residuals between H{t) and Du{t-D). Observe that the esti- 

mate D updates the "inverse filter": R^'^tj). Here R^-^ is the inverse kernel 

associated with the noise covariance of (43), defined such that 

L        ."■■■..■■'■■,. 

^r-t) = J i?„-V,^K {i^,t)di^ (45) 

For a low SNR condition and white noises of power A^, /2, the estimator of 

Fig. 5.1 no longer needs to update the inverse kernel i?„-^ This comes from the 

D-independent form of the covariance, Eq. (43), of r/ for low SNR 

It remains to be determined if the time varying inverse filter, /?„"^ of (45), is of 

simple enough form to be a practical implementation. 

The maximum likelihood estimator (MLE) is an optimal implementation. 

However, the "signal", D, is only present for a portion of the time interval [-L,L]. 

Consequently the MLE, implemented as above, over-utilizes the data, part of 

which may be purely observation noise.  An alternate, possibly sub-optimal, pro- 
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cedure would involve the implementation of a causal, joint estimation-detection 

scheme to estimate D from H{t). Essentially one would begin observing H{t) at 

t = L, and form an estimate of D, D{t), as t decreases to t = L-T^ (In this 

interval it is known that the signal D is present in the observations (41)). For 

t < L-Tg , the estimate D{t) could be used as evolving a priori information in a 

hypothesis test of the presence or absence of the "signal" D in additive noise r]{t). 

When the detection algorithm indicates the absence of Z) in the observations, 

H{t), the estimation procedure is terminated. The above approach converts the 

estimation problem, (41), into the linear problem of (27), where the "genie" is 

identified with the detection algorithm, and t^^ L. The details of the proposed 

estimation-detection scheme remain to be determined by future study. 

Some insight into the performance of the MLE of Fig. 5.1, for low SNR and 

white noise, may be obtained from considering the performance of the following 

simple estimate of D 

JfiT)dT 
-L 

where L is defined in (38).   Note, it must be assumed that the integral in (47) is 

greater than zero for the estimate to be well defined. This is true if r(r) is strictly 

positive definite, or if there is a DC component in the signal auto-correlation 

function.   Since only a single point of H{t), H[L), is used in (47) and no inverse 

filtering is implemented, D of (47) is sub-optimal, in comparison to the MLE. 

The estimate (47) is unbiased since the mean of »;, Eq. (42), is zero and in (41) 

L-D L L-D L 
J r{T)dT = f r{T)dT    and        / Tr(T)rfr = /rr(r)(fT = 0 (48) 

-L-D -L -L-D -L 

by virtue of the definition of L, given in (38), and the fact that the symmetric 

function r[T) is zero outside of r G [-T^ ,T^ ]. 
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As a simple example for the finite energy case, consider the case of a tri- 

angular shaped signal auto-correlation of width 2 T, and maximum S at zero. In 

this case 

ST 

-L * 
(49) 

and the low SNR variance of the estimate (47) is obtained immediately from (41), 

(43) and (46) 

var[D\ = <J {L,L) 
LT{- f 

L 

jr{r)d, 

TT    = QSNR^ 
(50) 

Recall, L = D^+T^ and SNR = S/N,. Eq. (50) indicates some of the impor- 

tant performance factors. There are tradeoffs between D^ , T and T^. In prin- 

ciple, unlike the random signal case, performance does not decrease with increas- 

ing T since the noise dominates over all but a time interval of length T,. For 

the same reason, in contrast to the behavior of the GCC at high SNR for random 

signals, the broader the signal auto-correlation, over the a priori region (small 

LjT,), the lower the variance. Increasing D^ , on the other hand, has analogous 

effects on performance as in the random signal case; it introduces more uncer- 

tainty into the delay parameter over time, thus increasing the error. 

For the periodic signal case, let the auto-correlation function consist of 

copies of the triangular auto-correlation function studied above, with inter- 

spacing Ts, where T,«Ts. With the assumption Ts>D^+T, (no ambi- 

guity because of phase), the variance for low SNR becomes 

t;ar[Z)] = 
&SNR' 

(51) 
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The form of (51) is identical to (50) except for the dependence on T. Here the 

variance decreases with increasing T since infinite signal observation time is 

available. 

For the deterministic (radar) signal, the expressions for the variance of the 

conventional time delay estimator known to us are valid only for small errors, i.e. 

high SNR, or for special signal situations (e.g. white or Markovian signals and 

noises [7]). Since (51) and (50) are valid only for low SNR-and involve additional 

parameters absent in the conventional estimator (e.g. L), comparison of the per- 

formance of the linearized procedure, discussed here, with that of conventional 

techniques is difficult. Further research into the relative merits of this estimation 

scheme is necessary, before any general conclusions can be drawn. 

VI. Conclusions 

The two signal processing schemes introduced in this chapter take interest- 

ing forms. However, additional study is needed to quantify the relative perfor- 

mance of these methods with respect to the conventional techniques. 

For the hybrid GCC-GCC envelope processor, a deeper analysis into the 

necessary conditions for the optimality of the structure of Fig. 4.3 for the con- 

strained minimization is necessary. In particular, one needs to know how to 

choose the various design parameters such that a), a solution of the constrained 

optimization exists, and if so b). the implementation of the resultant processor is 

sufficiently simple. For example, the choice of a, the observation versus envelope 

mixture parameter, should correspond to the (perhaps changing) priorities of high 

vs. low SNR performance. Furthermore, the number and magnitude of the con- 

straint boundaries will certainly have an impact on the performance, complexity 

and even the existence of the optimal estimator. 

The linearization method, discussed in Section V, is only (approximately) 
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linear for certain characteristic (deterministic) signal forms. For the general case 

the transformed cross-correlation function remains non-linear, a sum of a linear 

function of D and the product of two linear functions of D. However, the non- 

linearity may be a simple non-linearity (i.e. easy to invert). This will be signal 

dependent, and suggests the investigation of signal design for this technique. The 

performance of the method, in any case, remains to be thoroughly investigated. 
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Chapter 7 

Conclusion 

Two sensor, passive time delay estimation has been considered in this disser- 

tation. Both the development of new estimators and the characterization of esti- 

mator performance have been of interest. Of prime concern, however, have been 

two situations for which the conventional correlation type delay estimators 

display poor performance: unknown observation spectra, and low time-bandwidth 

product (BT). 

In Chapter 1, cross-correlation of the least mean square estimates (LMSE) of 

the signal and its delayed version gave a new correlation type delay estimate, 

the Wiener Processor (WP). For partially unknown observation spectra, replace- 

ment of the LMSEs by robust (min-max) estimates in the WP gave the Robust 

Wiener Processor (RWP). The RWP represents a first step in obtaining min-max 

time delay estimates for the difficult case of unknown spectra. 

Chapters 3 and 6 introduced alternate processing strategies designed to 

improve upon the conventional techniques for narrowband signals (low BT). The 

Center of Symmetry Estimate (CSE) was proposed in Chapter 3 as a way to 

desensitize the estimate to large errors (outliers). In Chapter 6, a combined sig- 

nal and signal envelope correlation type processor was optimized to yield a novel 

estimator structure for narrowband bandpass signals. 

In Chapters 4 and 5 the attention was focused on the theory of upcrossing 

probabilities and their application to modeling the large error performance of 

correlation type time delay estimates. Chapter 4 represents an extension of the 

existing results on the asymptotic distribution of the level crossings of a station- 

ary, continuous time random process to the non-stationary case. Then, a level 

rossing model for large delay estimator errors was taken in Chapter 5.   The c 
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approach taken in Chapter 5 is more general than the previous large error 

approximations in that it can be applied to the case of bandpass as well as 

lowpass signals. Motivated by the results of Chapter 4, approximations to the 

probability of large error and the estimator variance were derived. For large BT, 

and lowpass signal spectra, the approximations are in good agreement with the 

simulated performance of the cross-correlator. For bandpass spectra they are 

consistent with the relevant performance predictions of the Ziv-Zakai lower 

bound on achievable error. 

At the conclusion of this research several avenues are open for future study. 

Extensions to more general observation models than that treated here warrant 

investigation. Of special interest is the case of correlated noise and signal com- 

ponents, which occurs in multipath and reverberation environments. Also of 

interest is the multi-sensor situation. In both of the above scenarios the pairwise 

sensor cross-correlations cease to be sufficient statistics for the inter-sensor 

delays. Therefore a substantially different approach than that taken in this 

thesis may be necessary. Likewise, the case of a time evolving delay parameter, 

as occurs in tracking, introduces further complexity into the estimation problem. 

However, in the latter case the sample cross-correlation function remains suffi- 

cient for the delay. Consequently, in this case, some extensions of the present 

work may be possible. 



OFFICE OF NAVAL RESEARCH 
STATISTICS AND PROBABILITY PROGRAM 

BASIC DISTRIBUTION LIST 
FOR 

UNCLASSIFIED TECHNICAL REPORTS 

FEBRUARY  1982 

Copies Copies 

Statistics and Probability 
Program (Code 411(SP)) 

Office of Naval Research 
Arlington, VA  22217      3 

Defense Technical Information 
Center 

Cameron Station 
Alexandria, VA 22314     T2 

Commanding Officer 
Office of Naval Research 
Eastern/Central Regional Office 

Attn: Director for Science 
Barnes Building 
495 Summer Street 
Boston, MA 02210 1 

Commanding Officer 
Office of Naval Research 
Western Regional Office 

Attn: Dr. Richard Lau 
1030 East Green Street 
Pasadena, CA 91101        1 

U. S. ONR Liaison Office - Far East 
Attn: Scientific Director 
APO San Francisco 96503    1 

Applied Mathematics Laboratory 
David Taylor Naval Ship Research 
and Development Center 

Attn: Mr. G. H. Gleissner 
Bethesda, Maryland 20084   1 

Commandant of the Marine Coprs 
(Code AX) 

Attn: Dr. A. L. Slafkosky 
Scientific Advisor 

Washington, DC  20380      1 

Navy Library 
National Space Technology Laboratory 
Attn: Navy Librarian 
Bay St. Louis, MS 39522     1 

U. S. Army Research Office 
P.O. Box 12211 
Attn: Dr. J. Chandra 
Research Triangle Park, NC 

27705 1 

Director 
National Security Agency 
Attn: R51, Dr. Maar 
Fort Meade, MD    20755 1 

ATAA-SL,    Library 
U.S. Army TRADOC Systems 
Analysis Activity 

Department of the Army 
White Sands Missile Range, NM 

88002 T 

ARI  Field Unit-USAREUR 
Attn:    Library 
c/o    ODCSPER 
HQ USAEREUR & 7th Army 
APO New York 09403        1 

Library, Code 1424 
Naval Postgraduate School 
Monterey, CA 93940 1 

Technical Information Division 
Naval Research Laboratory 
Washington, DC  20375       1 

OASD (I&L), Pentagon 
Attn: Mr. Charles S. Smith 
Washington, DC 20301       1 



Copies Copies 

Director 
AMSAA 
Attn: DRXSY-MP, H. Cohen 
Aberdeen Proving Ground, MD  1 

21005 

Dr. Gerhard Heiche 
Naval Air Systems Conmand 

(NAIR 03) 
Jefferson Plaza No. 1 
Arlington, VA  20360    :  t 

Dr. Barbara Bailar 
Associate Director, Statistical 
Standards 

Bureau of Census 
Washington, DC 20233   ■■ : ■ 1 

Leon Slavin 
Naval Sea Systems Command 

(NSEA 05H) 
Crystal Mall #4, Rm. 129 
Washington, DC  20036      1 

B. E. Clark 
RR #2, Box 647-B 
Graham, NC 27253 1 

Naval Underwater Systems Center 
Attn: Dr. Derrill J. Bordelon 

Code 601 
Newport, Rhode Island 02840  1 

Naval Coastal Systems Center 
Code 741 
Attn: Mr. C. M. Bennett 
Panama City, FL 32401      1 

Naval Electronic Systems Command 
(NELEX 612) 

Attn: John Schuster 
National Center No. 1 
Arlington, VA  20360      1 

Defense Logistics Studies 
Information Exchange 

Army Logistics Management Center 
Attn: Mr. J. Dowling 
Fort Lee, VA 23801        1 

Reliability Analysis Center (RAC) 
RADC/RBRAC 
Attn: I. L. Krulac 

Data Coordinator/ 
Government Programs 

Griffiss AFB, New York 13441 

Technical Library 
Naval Ordnance Station 
Indian Head, MD 20640 . ^^^^^^^^^:;  ; 

LibraT7 
Naval Ocean Systems Center 
San Diego, CA 92152 

Technical Library 
Bureau of Naval Personnel 
Department of the Navy 
Washington, DC 20370 ■  ;    ; 

Mr. Dan Leonard 
Code 8105 
Naval Ocean Systems Center 
San Diego, CA 92152 

Dr. Alan F. Petty 
Code 7930 
Naval Research 
Washington, DC 

Laboratory 
20375 V 

Dr. M. J. Fischer 
Defense Communications Agency 
Defense Conmunications Engineering 
Center 

1860 Wiehle Avenue    . 
Reston, VA 22090 "• 

Mr. Jim Gates 
Code 9211 
Fleet Material Support Office 
U. S. Navy Supply Center 
Mechanicsburg, PA 17055        1 

Mr. Ted Tupper 
Code M-311C 
Military Sealift Command 
Department of the Navy 
Washington, DC 20390 1 



Copies Copies 

Mr. F. R. Del Priori 
Code 224 
Operational Test and Evaluation 
Force (OPTEVFOR) 

Norfolk, VA 23511 

w% 

W 



y217999 
> \ 


